Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer – Generative AI & NLP Specialist

Welocalize
10 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer – AI Team (Global Digital)

Data Scientist

Data Scientist

Machine Learning Engineer

Senior Machine Learning Engineer (GenAI Algos)

Senior Machine Learning Engineer (GenAI Algos)

OVERVIEW


The Machine Learning Engineer – Generative AI & NLP Specialist to design, develop, and implement cutting-edge AI-driven systems. This role will focus on enhancing translation systems using advanced NLP techniques and Generative AI (GenAI). The ideal candidate will have extensive experience in end-to-end machine learning (ML) lifecycles, large language models (LLMs), and the ability to create scalable, secure, and efficient AI solutions.
KEY RESPONSIBILITIES
- Design and optimize translation systems leveraging advanced NLP and Generative AI (GenAI) techniques.- Focus on delivering contextually accurate, multilingual solutions with domain-specific customizations to meet diverse client needs.- Continuously improve performance using metrics like BLEU scores and human evaluation benchmarks.- Take ownership of the entire machine learning pipeline, from prototyping and concept validation to scalable production deployment.- Collaborate with cross-functional teams to align solutions with business objectives and ensure seamless integration.- Implement monitoring frameworks to track model performance, detect anomalies, and ensure reliability in production.- Automate pipelines for model retraining and fine-tuning to address data drift and maintain accuracy.- Deploy highly scalable inference endpoints that handle concurrent requests efficiently while maintaining low latency.- Ensure compliance with security standards, including encryption, access control, and API authentication.- Develop well-documented APIs to enable seamless integration of GenAI capabilities into applications and external systems.- Support API versioning and updates to meet evolving requirements.- Work with vector and graph databases to enable efficient Retrieval-Augmented Generation (RAG) systems.- Optimize data retrieval processes and evaluate RAG metrics, such as precision and relevance, to ensure high-quality results.
REQUIREMENTS
- Deep understanding of the full ML lifecycle, including development, training, deployment, and maintenance.- Proficiency in tools like Weights & Biases (W&B) or MLflow to track and manage experiments.- Strong Python programming skills, with expertise in ML libraries such as LangChain, LlamaIndex, PyTorch, TensorFlow, NumPy, SciPy, pandas, and scikit-learn.- Experience designing APIs with industry best practices.- Strong knowledge of large language models, including open-source and commercial implementations, and their practical applications.- Basic experience in building or deploying AI agents for specialized tasks.- Hands-on experience with vector and graph databases, including understanding metrics for evaluating RAG systems.- Proficiency in cloud platforms, preferably Google Cloud Platform (GCP).- Familiarity with Docker and containerization technologies.- Proven ability to ensure that GenAI deployments are scalable, secure, and efficient.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.