Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer

X4 Technology
Stockport
5 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer - London

Machine Learning Engineer

Machine Learning Engineer (AI infra)

Machine Learning Engineer

Machine Learning Engineer (Databricks)

Machine Learning Engineer (Reinforcement Learning)

Job Title:AzureMachine Learning Engineer

Location: Fully Remote UK

Job Type:6 Month Contract + chance for extension

Interview Process: Video Interviews held remotely

Rate:DOE Outside IR35


A Private Equity firm are seeking anAzureMachine Learning Engineer to join on an initial 6-month contract to assist in the firms portfolio optimisation, risk management, and predictive modelling. You will be working alongside them through one of our consultancy partners who have recently won the bid for the project.


The end point client operate primarily in an Azure environment hence demonstratable experience in Azure is a must.


Machine Learning Engineer Key Responsibilities:

  • Use generative AI to build predictive models for market trends, asset valuation, and investment opportunities.
  • Leverage AI algorithms for portfolio optimisation, risk analysis, and asset allocation strategies.
  • Automate data extraction and analysis from financial reports, news, and alternative data sources to support investment decisions.
  • Use AI to simulate different market conditions and generate optimal exit strategies.
  • Help in the adoption of AI tools to optimise operations, reduce costs, and drive growth through automation and data-driven insights.


Machine Learning Engineer Key Skills Required:

  • Comprehensive understanding of the full machine learning lifecycle, from development to production.
  • Experience deploying machine learning models using frameworks like Scikit-learn, TensorFlow, or PyTorch.
  • Proficiency in Python and adherence to software engineering best practices.
  • Strong technical expertise in cloud architecture, security, and deployment, with experience in Azure.
  • Hands-on experience with containers, particularly Docker and Kubernetes.
  • Solid foundation in probability, statistics, and common supervised and unsupervised learning techniques.


If you think this could be an exciting opportunity for you then please apply now!

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.