Machine Learning Engineer - Content Understanding (Basé à London)

Jobleads
Holloway
2 weeks ago
Create job alert

Delivering the best Spotify experience possible. To as many people as possible. In as many moments as possible. That’s what the Experience team is all about. We use our deep understanding of consumer expectations to enrich the lives of millions of our users all over the world, bringing the music and audio they love to the devices, apps and platforms they use every day. Know what our users want? Join us and help Spotify give it to them.

As a Machine Learning Engineer in our Content Understanding teams, you will help define and build ML deployed at scale in support of a broad range of use cases driving value in media and catalog understanding.

Here are some examples of the work you may support: Audio fingerprinting to understand what music is played in podcasts enabling musicians to get royalties, Video and image tagging to understand what is happening in any video on Spotify for moderation and recommendations, Audiobook Author attribution using graph ML approaches for search and recommendations, Categorizing tracks in the catalog to know which are functional content or music tracks leveraged in royalty calculations and in search and recommendations.

Our teams are composed of product, machine learning, data and backend engineers, and subject matter experts who average 11 years behind the scenes in the music industry.

We are looking for a Machine Learning Engineer to help us define and build Spotify’s capabilities in this area. Our team expands the state of the art in AI-based machine technology, which enables intelligent, efficient, and intuitive ways to search, re-use, explore or process metadata. You will use world-class engineering and machine learning techniques on real-world, internal, and external big data to directly impact the evolution of our music catalog.

What You'll Do

  • Build production systems that enrich and improve our listeners’ experience on the platform
  • Contribute to designing, building, evaluating, shipping, and refining Spotify’s product by hands-on ML development
  • Prototype new approaches and production-ize solutions at scale for our hundreds of millions of active users
  • Help drive optimization, testing, and tooling to improve quality
  • Perform data analysis to establish baselines and inform product decisions
  • Collaborate with a cross functional agile team spanning design, data science, product management, and engineering to build new technologies and features

Who You Are

  • You have professional experience in applied machine learning
  • Extensive experience working in a product and data-driven environment (Python, Scala, Java, SQL, or C++, with Python experience required) and cloud platforms (GCP or AWS).
  • You have some hands-on experience implementing or prototyping machine learning systems at scale
  • You have experience architecting data pipelines and are self-sufficient in getting the data you need to build and evaluate models, using tools like Dataflow, Apache Beam, or Spark.
  • You care about agile software processes, data-driven development, reliability, and disciplined experimentation
  • You have experience and passion for fostering collaborative teams
  • Experience with TensorFlow, pyTorch, and/or Google Cloud Platform is a plus
  • Experience with building data pipelines and getting the data you need to build and evaluate your models, using tools like Apache Beam / Spark is a plus

Where You'll Be

  • This role is based in London (UK).
  • We offer you the flexibility to work where you work best! There will be some in-person meetings, but still allows for flexibility to work from home. We ask that you come in 3 times per week.

#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer, Amazon Studios AI Lab (Basé à London)

Machine Learning Engineer - Chat London (Basé à London)

Machine Learning Engineer - User Journey (Basé à London)

Machine Learning Engineer, Valuations

Machine Learning Engineer - Personalisation London (Basé à London)

Machine Learning Engineer - Fixed Term Contract · London · (Basé à London)

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.

Quantexa Machine‑Learning Jobs in 2025: Your Complete UK Guide to Joining the Decision‑Intelligence Revolution

Money‑laundering rings, sanctioned entities, synthetic identities—complex risks hide in plain sight inside data. Quantexa, a London‑born scale‑up now valued at US $2.2 bn (Series F, August 2024), solves that problem with contextual decision‑intelligence (DI): graph analytics, entity resolution and machine learning stitched into a single platform. Banks, insurers, telecoms and governments from HSBC to HMRC use Quantexa to spot fraud, combat financial crime and optimise customer engagement. With the launch of Quantexa AI Studio in February 2025—bringing generative AI co‑pilots and large‑scale Graph Neural Networks (GNNs) to the platform—the company is hiring at record pace. The Quantexa careers portal lists 450+ open roles worldwide, over 220 in the UK across data science, software engineering, ML Ops and client delivery. Whether you are a graduate data scientist fluent in Python, a Scala veteran who loves Spark or a solutions architect who can turn messy data into knowledge graphs, this guide explains how to land a Quantexa machine‑learning job in 2025.