Machine Learning Engineer · · (Basé à London)

Jobleads
Greater London
2 months ago
Create job alert

MLOps Engineer

European Remote

$5,000 to $6,500 per month

We are looking for a MLOps Engineer to join our DataOps team, a new and growing team within FXC Intelligence with a focus on being the intermediary between Data Platform and DevOps teams, supporting our AWS migration and working closely with the AI team.

What you’ll be working on:

  • Building and maintaining our data infrastructure using DevOps and Data Engineering practices, prioritising the needs of stakeholders
  • Collaborate with Data Practitioners across the company to gain an understanding of their pains and needs and support them where engineering or data science experience is required
  • Help Data Scientists and ML Engineers write reliable code and ship it to clients
  • Help Data Analysts and other people in the business by providing the necessary tools and processes
  • Collaborate with the DevOps team regarding standards and best practices for working with infrastructure in the company
  • Participate in the migration from on-prem to AWS in the area of data infrastructure
  • Collaborate with the evolution of the data stack, focusing on scalability, reliability and transparency

About the DataOps team:

  • The DataOps team is a new and growing team within FXC, serving as a critical intermediary between the Data Platform team and DevOps, focusing on implementing core functionalities for databases and ETL/ELT tools
  • The team plays a key role in the migration of infrastructure to AWS, ensuring efficiency and scalability
  • DataOps also collaborates closely with the AI team to develop and maintain machine learning pipelines, supporting the deployment and management of AI models

You should apply if you have:

  • Experience with deploying, testing and monitoring ML models
  • Experience with data orchestration/pipelines and data warehousing
  • Good working knowledge of Python and data science libraries
  • Operational familiarity with ML Infrastructure tools such as Kubeflow, MLFlow and neptune.ai
  • An understanding of continuous integration and continuous deployment practices, as well as experience with tooling like GitHub actions and Gitlab CI

These skills will help, but aren’t essential:

  • Familiarity with cloud
  • Knowledge of Infrastructure as Code (Terraform, Terragrunt)

Tech Stack:

  • Clickhouse
  • DBT
  • Airflow
  • Terraform, Terragrunt, Helm
  • AWS
    • Sagemaker
    • Bedrock
  • Gitlab CI
  • DVC
  • MLFlow/Kubeflow/Weights & Biases

About us:

FXC Intelligence is a leading provider of cross-border payments data and intelligence, providing some of the world's biggest companies, central banks and non-governmental organisations with the strategic insights, expertise and awareness to effectively compete in their chosen markets. By joining us, you will be diving into a world of data-driven exploration and innovation, revolutionising financial insights through cutting-edge technologies, machine learning and predictive analytics.

Your contributions will shape the future of cross-border finance, helping clients to uncover better paths to growth and profitability, as well as being a trusted reference and source for many leading international publications.

We are proud to produce industry-changing data and intelligence, aided by our company values of being customer-focused, taking ownership, knowledge, communication and leadership.

We’re an innovative company that strives to look after its team and we take pride in providing a positive company culture. Have a look at our careers page to see for yourself what it’s like to work with us.

Also, why not take a look at our employee engagement blog to see how our colleagues feel about working at FXC Intelligence!

At FXC Intelligence, we believe in embracing diversity in all forms and fostering an inclusive environment. All applicants will be considered for employment without attention to ethnicity, religion, sexual orientation, gender identity, family or parental status, national origin, veteran, neurodiversity status or disability status.

#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer, Generative AI Innovation Center

Machine Learning Engineer, Ranking Platform New Remote - United Kingdom (Basé à London)

Machine Learning Engineer - Fixed Term Contract (Basé à London)

Machine Learning Engineer, Enterprise (Basé à London)

Machine Learning Engineer, London (Basé à London)

Machine Learning Engineer, JP Science and Data (Basé à London)

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.

Quantexa Machine‑Learning Jobs in 2025: Your Complete UK Guide to Joining the Decision‑Intelligence Revolution

Money‑laundering rings, sanctioned entities, synthetic identities—complex risks hide in plain sight inside data. Quantexa, a London‑born scale‑up now valued at US $2.2 bn (Series F, August 2024), solves that problem with contextual decision‑intelligence (DI): graph analytics, entity resolution and machine learning stitched into a single platform. Banks, insurers, telecoms and governments from HSBC to HMRC use Quantexa to spot fraud, combat financial crime and optimise customer engagement. With the launch of Quantexa AI Studio in February 2025—bringing generative AI co‑pilots and large‑scale Graph Neural Networks (GNNs) to the platform—the company is hiring at record pace. The Quantexa careers portal lists 450+ open roles worldwide, over 220 in the UK across data science, software engineering, ML Ops and client delivery. Whether you are a graduate data scientist fluent in Python, a Scala veteran who loves Spark or a solutions architect who can turn messy data into knowledge graphs, this guide explains how to land a Quantexa machine‑learning job in 2025.

Machine Learning vs. Deep Learning vs. MLOps Jobs: Which Path Should You Choose?

Machine Learning (ML) continues to transform how businesses operate, from personalised product recommendations to automated fraud detection. As ML adoption accelerates in nearly every industry—finance, healthcare, retail, automotive, and beyond—the demand for professionals with specialised ML skills is surging. Yet as you browse Machine Learning jobs on www.machinelearningjobs.co.uk, you may encounter multiple sub-disciplines, such as Deep Learning and MLOps. Each of these fields offers unique challenges, requires a distinct skill set, and can lead to a rewarding career path. So how do Machine Learning, Deep Learning, and MLOps differ? And which area best aligns with your talents and aspirations? This comprehensive guide will define each field, highlight overlaps and differences, discuss salary ranges and typical responsibilities, and explore real-world examples. By the end, you’ll have a clearer vision of which career track suits you—whether you prefer building foundational ML models, pushing the boundaries of neural network performance, or orchestrating robust ML pipelines at scale.