Machine Learning Engineer

fifty-five
London
3 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer( Real time Data Science Applications)

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

About Us:

fifty-five is a new kind of data company that helps brands leverage data to improve marketing, media, and customer experience through a combination of specialised consulting and technology services.

As the data and marketing pillar of the Brandtech Group, we offer services that blend strategy consulting, cloud services, media consulting, and customer experience expertise.

fifty-five comprises more than 400 digital experts. Digital consultants, tracking and media specialists, engineers, and data scientists work closely together to deliver top-tier marketing advice and technical assistance to brands across various industries, globally.

A partner to advertisers in data collection, activation, and utilisation, we help organisations become true omnichannel entities, mastering the efficiency of their digital ecosystem and its synergies with the physical world.

Based in London, we operate across three time zones from our 10 offices located in Paris, London, Geneva, Milan, Shanghai, Hong Kong, Shenzhen, Taipei, Singapore, and New York.

About the Role:

Within the Data Science team, you will actively participate in projects carried out by fifty-five on behalf of its clients. These projects encompass the application of machine learning methods to optimise site conversion rates and enhance the performance of the digital media mix for leading advertisers.

As an ML Engineer, you must master machine learning techniques to address a wide range of use cases while considering client activation constraints. Innovation will be central to your work, as you continuously enhance the performance of fifty-five’s offerings and adapt to new tools and constraints (such as privacy considerations).

You will collaborate closely with Data Engineers and Data Analysts and will play a role in helping them develop their skills.

Tasks & Responsibilities:

Design, develop, and maintain data science solutions for our clients (scoring models, time series models, attribution models, etc.). Conduct scientific research to foster innovation in daily projects. Implement data transformation and processing logic to ensure high-quality, reliable data is available for analysis and reporting. Monitor and troubleshoot data pipeline issues, ensuring timely resolution and minimal impact on business operations. Collaborate with internal consulting and client teams to understand data requirements and deliver data solutions that meet business needs. Effectively engage with clients at all levels, translating complex technical concepts into clear, actionable insights and maintaining strong relationships throughout project lifecycles.

Required Experience:

Graduated from a leading institution with a specialisation in a STEM field, you have 2–3 years of experience in data science. Demonstrated proficiency in data science missions and have successfully delivered complex machine learning projects

Required Skills:

Analytical and proactive mindset Proficient with both python and SQL Understanding of data science algorithms, how to train and evaluate them comprehensively Good working practices, such as code versioning and familiarity with CI/CD Ability to explain technical solutions clearly to non-technical or less technical stakeholders Some experience working in the cloud, such as GCP or AWS is a plus Fluency in English

If this sounds like you, please get in touch! We'd be delighted to speak with you.

In return, we can offer the following benefits:

Being part of a multicultural, dynamic and fast-growing team Continuous (and certified) training on the digital ecosystem and technologies (initial training for all new employees, followed by recurring training sessions) Private medical coverage through AXA Transport for London travel card allowance - covering 50% of zone 1-2 allowance The flexibility to work remotely for part of the week - this will continue post Covid 25 days holiday per year, in addition to UK bank and public holidays Company pension plan Company-sponsored sporting and social activities Monthly Codecademy subscription - reimbursable upon completion of chosen training path Cycle to Work Scheme

We do not use AI tools to filter candidates, and we request that applicants please refrain from using AI tools in our interviews or technical tasks. Our managers are trained to identify the use of AI-generated responses and it will not benefit your application.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.