Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer - Autonomy London

Wayve Technologies Ltd.
London
4 weeks ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer (SC Cleared)

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Machine Learning Computer Vision Engineer

Senior MLOps Engineer

Computer Vision Engineer

At Wayve we're committed to creating a diverse, fair and respectful culture that is inclusive of everyone based on their unique skills and perspectives, and regardless of sex, race, religion or belief, ethnic or national origin, disability, age, citizenship, marital, domestic or civil partnership status, sexual orientation, gender identity, veteran status, pregnancy or related condition (including breastfeeding) or any other basis as protected by applicable law.

About us

Founded in 2017, Wayve is the leading developer of Embodied AI technology. Our advanced AI software and foundation models enable vehicles to perceive, understand, and navigate any complex environment, enhancing the usability and safety of automated driving systems.

Our vision is to create autonomy that propels the world forward. Our intelligent, mapless, and hardware-agnostic AI products are designed for automakers, accelerating the transition from assisted to automated driving.

In our fast-paced environment big problems ignite us—we embrace uncertainty, leaning into complex challenges to unlock groundbreaking solutions. We aim high and stay humble in our pursuit of excellence, constantly learning and evolving as we pave the way for a smarter, safer future.

At Wayve, your contributions matter. We value diversity, embrace new perspectives, and foster an inclusive work environment; we back each other to deliver impact.

Make Wayve the experience that defines your career!

The role

As a Staff/Principal ML Engineer within the Autonomy team, you’ll lead critical initiatives that push the frontier of model-based autonomous driving—both in terms of core driving performance and feature-level intelligence such as personalization, comfort, and collaboration.

You’ll design and deliver ML-driven behaviors that scale from assisted to autonomous driving. Your work will span across model architecture, data pipelines, evaluation frameworks, and real-world deployment. You’ll collaborate deeply with AI Platform, Simulation, Robot SW and Model Release teams to build systems that are performant, adaptable, and ready for production.

What You’ll Be Working On

  • Develop and improve end-to-end driving models with state-of-the-art performance, robustness, and generalization.
  • Lead projects on personalized and collaborative driving, including behavior conditioning, comfort tuning, and user alignment.
  • Build evaluation pipelines and metrics for both closed-loop and open-loop driving performance and product readiness.
  • Curate and mine real-world and synthetic data to drive scenario diversity, coverage, and feature-specific development.
  • Influence architecture choices, training methodologies, and deployment pathways for production-scale learning systems.
  • Collaborate cross-functionally across various teams to ensure integration and iteration velocity.
  • Mentor senior engineers and shape the long-term technical direction across Autonomy.

About you

  • 7+ years (Staff) or 10+ years (Principal) years in ML engineering, with a strong track record of shipping deep learning systems to production.
  • Expert in deep learning (esp. sequential models, control, planning, or perception).
  • Proficient in Python and other relevant languages (e.g. C++ and CUDA) and ML frameworks (esp. PyTorch), with a solid foundation in software engineering practices.
  • Experience with real-time systems or robotics, ideally with simulation- or vehicle-in-the-loop components.
  • Ability to lead technical initiatives across teams, drive alignment, and mentor engineers.
  • Prior work in autonomous driving, imitation learning, or trajectory prediction.
  • Familiarity with personalization, human behavior modeling, or driver intent inference.
  • Experience integrating ML systems into production hardware or multi-agent simulation.

This is a full-time role based in our office in London. At Wayve we want the best of all worlds so we operate a hybrid working policy that combines time together in our offices and workshops to fuel innovation, culture, relationships and learning, and time spent working from home. We operate core working hours so you can determine the schedule that works best for you and your team.

We understand that everyone has a unique set of skills and experiences and that not everyone will meet all of the requirements listed above. If you’re passionate about self-driving cars and think you have what it takes to make a positive impact on the world, we encourage you to apply.

DISCLAIMER: We will not ask about marriage or pregnancy, care responsibilities or disabilities in any of our job adverts or interviews. However, we do look to capture information about care responsibilities, and disabilities among other diversity information as part of an optional DEI Monitoring form to help us identify areas of improvement in our hiring process and ensure that the process is inclusive and non-discriminatory.

Apply for this job

*

indicates a required field

First Name *

Last Name *

Email *

Phone *

Location (City) *

Resume/CV *

Enter manually

Accepted file types: pdf, doc, docx, txt, rtf

Education

School Select...

Degree Select...

Select...

LinkedIn Profile *

When are you available to start? *

Do you require sponsorship? * Select...

What is your preferred pronoun?

Learn more about how we handle your data for recruiting purposes in our privacy notice: * Select...

https://wayve.ai/recruitment-privacy-notice/

Wayve UK Demographic Questions

Wayve is committed to creating a diverse and inclusive culture for our employees. It is crucial for us to understand the demographics of our candidate pool to measure our recruitment practices.

There is no requirement for any candidate to answer our demographic questions.

For candidates who complete the questionnaire, their data will be anonymised and used only in the aggregate to inform our attraction strategy. Wayve is an equal opportunity employer and this data will be used for opportunity monitoring purposes.

What is your gender identity? Select...

Which age group do you belong to? Select...

What is your ethnicity? Select...

Do you consider yourself to have a disability or long-term health condition? Select...


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Skills in Machine Learning According to LinkedIn & Indeed Job Postings

Machine learning (ML) is at the forefront of innovation, powering systems in finance, healthcare, retail, logistics, and beyond in the UK. As organisations leverage ML for predictive analytics, automation, and intelligent systems, demand for skilled practitioners continues to grow. So, which skills are most in demand? Drawing on insights from LinkedIn and Indeed, this article outlines the Top 10 machine learning skills UK employers are looking for in 2025. You'll learn how to demonstrate these capabilities through your CV, interviews, and real-world projects.

The Future of Machine Learning Jobs: Careers That Don’t Exist Yet

Machine learning (ML) has become one of the most powerful forces reshaping the modern world. From voice assistants and recommendation engines to fraud detection and medical imaging, it underpins countless applications. ML is no longer confined to research labs—it powers business models, public services, and consumer technologies across the globe. In the UK, demand for machine learning professionals has risen dramatically. Organisations in finance, retail, healthcare, and defence are embedding ML into their operations. Start-ups in Cambridge, London, and Edinburgh are pioneering innovations, while government-backed initiatives aim to position the UK as a global AI leader. Salaries for ML engineers and researchers are among the highest in the tech sector. Yet despite its current importance, machine learning is only at the beginning of its journey. Advances in generative AI, quantum computing, robotics, and ethical governance will reshape the profession. Many of the most vital machine learning jobs of the next two decades don’t exist today. This article explores why new careers will emerge, the roles likely to appear, how today’s roles will evolve, why the UK is well positioned, and how professionals can prepare now.

Seasonal Hiring Peaks for Machine Learning Jobs: The Best Months to Apply & Why

The UK's machine learning sector has evolved into one of Europe's most intellectually stimulating and financially rewarding technology markets, with roles spanning from junior ML engineers to principal machine learning scientists and heads of artificial intelligence research. With machine learning positions commanding salaries from £32,000 for graduate ML engineers to £160,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this pioneering and rapidly evolving field. Unlike traditional software engineering roles, machine learning hiring follows distinct patterns influenced by AI research cycles, model development timelines, and algorithmic innovation schedules. The sector's unique combination of mathematical rigour, computational complexity, and real-world application requirements creates predictable hiring windows that strategic professionals can leverage to advance their careers in developing tomorrow's intelligent systems. This comprehensive guide explores the optimal timing for machine learning job applications in the UK, examining how enterprise AI strategies, academic research cycles, and deep learning initiatives influence recruitment patterns, and why strategic timing can determine whether you join a groundbreaking AI research team or miss the opportunity to develop the next generation of machine learning algorithms.