Machine Learning Engineer

Edison Smart®
Sheffield
2 days ago
Create job alert

Machine Learning Engineer - Contract (Financial Services, Outside IR35)

Duration: 6 months

Rate: £650 - £750 per day

IR35: Outside

Location: UK / Remote


We’re seeking an experienced Machine Learning Engineer to support a Financial Services organisation on an initial 6-month contract, working on production-grade ML systems that operate in regulated, high-volume environments.

This role is ideal for someone comfortable taking models from research through to deployment, with a strong appreciation for robust engineering, governance, and scalability.


Responsibilities

  • Design, build, and deploy machine learning models into production within a Financial Services environment
  • Collaborate closely with Data Scientists, Software Engineers, Risk, and Product teams
  • Build and maintain end-to-end ML pipelines (training, validation, inference, monitoring)
  • Ensure models meet requirements around performance, resilience, and explainability
  • Contribute to MLOps best practices, model governance, and technical standards
  • Support model monitoring, drift detection, and ongoing optimisation


Required Experience

  • Proven commercial experience as a Machine Learning Engineer, ideally within Financial Services, FinTech, or a regulated environment
  • Strong Python skills and hands-on experience with ML libraries (TensorFlow, PyTorch, scikit-learn)
  • Experience deploying and supporting ML models in production
  • Solid understanding of data pipelines, versioning, testing, and software engineering best practices
  • Experience working with cloud platforms (AWS, GCP, or Azure)


Nice to Have

  • Experience with fraud, risk, credit, AML, pricing, or customer analytics use cases
  • Familiarity with MLOps tools (MLflow, Kubeflow, Airflow, etc.)
  • Docker and Kubernetes experience
  • Exposure to model governance, explainability, or regulatory frameworks


Contract Details

  • £650–£750 per day (Outside IR35)
  • Initial 6-month contract, with strong extension potential
  • Immediate or short-notice start preferred

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer - London

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.