Machine Learning Engineer

The Very Group
Liverpool
11 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

About us

We are The Very Group and we’re here to help families get more out of life. We know that our customers work hard for their families and have a lot to balance in their busy lives. That’s why we combine amazing brands and products with flexible payment options on Very.co.uk to help them say yes to the things they love. We’re just as passionate about helping our people get more out of life too; building careers with real growth, a sense of purpose, belonging and wellbeing.

Role Purpose

As an ML Engineer, you will be responsible for supporting machine learning projects from inception through to deployment. You will work with cross-functional teams to develop data pipelines and implement models in production. This role is ideal for those with foundational experience in machine learning, eager to grow and learn in a supportive environment.

About the role

Technical Contribution

  • Assist in developing machine learning models by preparing data, conducting experiments, and contributing to model evaluation.
  • Build and maintain data pipelines to support machine learning workflows.
  • Collaborate with senior team members to ensure models are deployed and maintained effectively in production environments.

Collaboration

  • Work closely with mid-level and senior engineers on model development and deployment tasks.
  • Support data engineers and analysts in building robust data pipelines for machine learning.

Nature and Area of impact

  • Machine Learning has a direct and indirect influence on the way we interact with customers, from customer campaign selection to product recommendation to credit decisioning – machine learning has a positive impact on how we interact with customers.
  • Machine Learning has a direct and indirect influence on the way we interact with customers, from customer campaign selection to product recommendation to credit decisioning – machine learning has a positive impact on how we interact with customers.
  • Successful machine learning models significantly improve business performance through increases in sales and return and/or reduction in risk.
  • Through accurate, robust, ethical, secure, and sustainable machine learning deliveries we ensure that our business and customers are served and protected.
  • Part of this role is to ensure the strategic roadmap of machine learning within the retail business is in line with Financial Services development.

Key Responsibilities.

  • Prepare datasets and perform data pre-processing, including cleaning, transformation, and feature engineering.
  • Implement basic machine learning models under the supervision of senior engineers.
  • Support model deployment, testing, and maintenance in production environments.
  • Contribute to the monitoring and troubleshooting of deployed machine learning systems.
  • Document code, processes, and best practices to ensure knowledge sharing across the team.

Required skills and experience

  • Foundational knowledge of machine learning techniques and concepts.
  • Basic understanding of data structures, algorithms, and statistical methods.
  • Experience with Python and machine learning libraries (e.g., Scikit-Learn, Pandas).
  • Familiarity with SQL and database querying.
  • Understanding of cloud-based environments, preferably AWS, for model development and deployment.
  • A degree in Computer Science, Mathematics, Data Science, or related fields (or relevant experience). ·
  • A strong willingness to learn and grow in the field of machine learning.

Benefits

  • On Target bonus (Business and Personal performance) of 4%
  • £250 of flexible benefits allowance.
  • 27 days holiday + bank holidays + option to purchase 5 additional days
  • 6% matched pension
  • Hybrid working - 3 days per week from our Speke HQ.
  • Brand discount up to 25%
  • Ongoing training and development.

Hiring Process

What happens next?

Our talent acquisition team will be in touch if you’re successful so keep an eye on your emails! We’ll arrange a short call to learn more about you, as well as answer any questions you have. If it feels like we’re a good match, we’ll share your CV with the hiring manager to review. Our interview process is tailored to each role and can be in-person or held remotely.

You can expect a three-stage interview process for this position:

1st Stage -An initial informal chat with a member of our TA Team.

2nd stage - A 30-45 minute video call with a member of the hiring team to discuss your skills and relevant experience. This is a great opportunity to find out more about the role and to ask any questions you may have.

3rd Stage – A more formal interview which is split into behavioural and technical questions, this will be with a number of the team and is likely to last around 2 hours.

As an inclusive employer please do let us know if you require any reasonable adjustments.

Equal opportunities

We’re an equal opportunity employer and value diversity at our company. We do not discriminate based on race, religion, colour, national origin, sex, gender, gender expression, sexual orientation, age, marital status, veteran status, or disability status.

We will ensure that individuals with disabilities are provided reasonable accommodation to participate in the job application or interview process, to perform essential job functions, and to receive other benefits and privileges of employment. Please contact us to request accommodation.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.