Machine Learning Engineer

Stott and May
London
2 weeks ago
Create job alert

MLOps Engineer

Location: London, UK (Hybrid – 2 days per week in office)

Day Rate: Market rate (Inside IR35

Duration: 6 months

Role Overview

As an MLOps Engineer, you will support machine learning products from inception, working across the full data ecosystem. This includes developing application-specific data pipelines, building CI/CD pipelines that automate ML model training and deployment, publishing model results for downstream consumption, and building APIs to serve model outputs on-demand.

The role requires close collaboration with data scientists and other stakeholders to ensure ML models are production-ready, performant, secure, and compliant.


Key Responsibilities

  • Design, implement, and maintain scalable ML model deployment pipelines (CI/CD for ML)
  • Build infrastructure to monitor model performance, data drift, and other key metrics in production
  • Develop and maintain tools for model versioning, reproducibility, and experiment tracking
  • Optimize model serving infrastructure for latency, scalability, and cost
  • Automate the end-to-end ML workflow, from data ingestion to model training, testing, deployment, and monitoring
  • Collaborate with data scientists to ensure models are production-ready
  • Implement security, compliance, and governance practices for ML systems
  • Support troubleshooting and incident response for deployed ML systems


Required Skills and Experience

  • Strong programming skills in Python; experience with ML libraries such as Snowpark, PySpark, or PyTorch
  • Experience with containerization tools like Docker and orchestration tools like Airflow or Astronomer
  • Familiarity with cloud platforms (AWS, Azure) and ML services (e.g., SageMaker, Vertex AI)
  • Experience with CI/CD pipelines and automation tools such as GitHub Actions
  • Understanding of monitoring and logging tools (e.g., NewRelic, Grafana)


Desirable Skills and Experience

  • Prior experience deploying ML models in production environments
  • Knowledge of infrastructure-as-code tools like Terraform or CloudFormation
  • Familiarity with model interpretability and responsible AI practices
  • Experience with feature stores and model registries

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.