National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer

Tesco
Welwyn Garden City
2 days ago
Create job alert

Within Tesco Data & Analytics, we help our customers and the communities where we operate get the most value from data. We build and run Tesco’s data platforms, we architect and engineer data onto these platforms, provide capabilities and tools to the analytics community across Tesco, and develop data products at scale.
Our Data Science teams are involved in a broad range of projects, spanning across supply chain, logistics, store and online. These include projects in the areas of Operations Optimisations, Commercial Decision Support (e.g. Forecasting and Range Optimisation), Online (e.g. Search and Recommendation) and Intelligent Edge (e.g. Computer Vision). Our Machine Learning Engineers work alongside our data scientists, helping with everything from development of tools and platforms, code optimisations through to deployment of solutions on the edge, cloud and big-data environments.
As a Software Engineer in Machine Learning Engineering, you’ll be a significant contributor to the delivery of products in one of Tesco’s most strategic technology areas. You’ll work with other engineers, data scientists, product managers, systems engineers, and analytics professionals to help deliver valuable and innovative outcomes for our customers. You’ll work within and across our Engineering and Data Science teams, delivering scalable products that improve how we serve our customers and run our operations.
Responsibilities will include:
Participating in group discussions on system design and architecture.
Working with product teams to communicate and translate needs into technical requirements.
Working with Data Scientists, Engineers and Product teams across the software lifecycle.
Delivering high quality code and solutions, bringing solutions into production.
Performing code reviews to optimise technical performance of data science solutions.
Supporting production systems, resolving incidents, and performing root cause analysis.
Continually look for how we can evolve and improve our technology, processes and practices.
Sharing knowledge with the wider engineering community.
Applying SDLC practices to create and release robust software.
You come from either an Engineering or Data Science background, with a good understanding of the Data Science Toolkit (Programming, Machine Learning, MLOps etc) and bringing data science solutions into production. You therefore tick the majority of the following points: Key Requirements: The ideal candidate is fluent in Python programming language.
Customer focus with the right balance between outcome delivery and technical excellence.
The ability to apply technical skills and know-how to solving real world business problems.
Demonstratable experience of building scalable and resilient systems.
Commercial experience contributing to the success of high impact Data Science projects within complex organisations.
Awareness of emerging MLOps practices and tooling would be an advantage e.g. feature stores and model lifecycle management.
An analytical mind set and the ability to tackle specific business problems.
Use of version control (Git) and related software lifecycle tooling.
Experience with tooling for monitoring, logging and alerting e.g. Splunk or Grafana.
Understanding of common data structures and algorithms.
Experience working with open-source Data-Science environments.
Knowledge of open source big-data technologies such as Apache Spark.
Experience building solutions that run in the cloud, ideally Azure.
Experience with software development methodologies including Scrum & Kanban.
It would be a bonus if you have a background or strong understanding of the retail sector, logistics and/or ecommerce. However, this is not a requirement.
Our vision at Tesco is to become every customer's favourite way to shop, whether they are at home or out on the move. Our core purpose is ‘Serving our customers, communities and planet a little better every day’. Serving means more than a transactional relationship with our customers. It means acting as a responsible and sustainable business for all stakeholders, for the communities we are part of and for the planet. We are proud to have an inclusive culture at Tesco where everyone truly feels able to be themselves. At Tesco, we not only celebrate diversity, but recognise the value and opportunity it brings. We're committed to creating a workplace where differences are valued, and make sure that all colleagues are given the same opportunities. We’re proud to have been accredited Disability Confident Leader and we’re committed to providing a fully inclusive and accessible recruitment process. For further information on the accessibility support we can offer, please click here. We’re a big business and we can offer a range of diverse full-time & part-time working patterns across our many business areas, which means that we can find something that works for you. We work in a more blended pattern - combining office and remote working. Our offices will continue to be where we connect, collaborate and innovate. If you are applying internally, please speak to the Hiring Manager about how this can work for you - Everyone is welcome at Tesco.
#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer - Bioimage Data & Agentic Systems

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.