Machine Learning Engineer

Morson Talent
London
1 year ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer Python AWS

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

We're seeking a Machine Learning Engineer with strong data engineering expertise to build scalable real-time data pipelines and develop advanced ML models. This role involves collaborating with cross-functional teams to deliver innovative solutions. Key Responsibilities: - Data Engineering: Build and maintain real-time data pipelines and ETL workflows. Ensure data quality and integrity. - Machine Learning: Design, train, and optimize ML models for fraud prevention and personalization. - MLOps: Deploy, monitor, and maintain ML models in production using tools like Docker, Kubernetes, and cloud platforms (AWS/GCP). - Data Analysis: Preprocess data, identify trends, and derive insights using clustering, classification, and anomaly detection techniques. - Collaboration: Work with product managers, engineers, and data scientists to align technical solutions with business goals. What We're Looking For: - Experience: 2+ years in ML, data engineering, or related fields, with a focus on fraud detection or personalization. Technical Skills: - Proficiency in Python, SQL, and big data tools (e.g., Kafka, Spark). - Strong knowledge of ML frameworks (TensorFlow, PyTorch). - Experience with MLOps and cloud technologies (AWS/GCP). - Analytical Skills: Strong understanding of statistical methods and data visualization tools (e.g., Pandas, Matplotlib). - Mindset: Adaptable, innovative, and comfortable in a fast-paced environment

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.