Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer

Harnham
Cambridge
1 month ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer - London

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer – On-Device Health Monitoring

Cambridge (1 day a week)

Up to £80,000 + Equity + Benefits


About the Role

We’re working with a pioneering health-tech start-up that’s transforming the way we measure human health through sound. Their mission is to create the world’s leading foundation model for turning sound into health insights — enabling preventative health monitoring through devices people already own.


They’re now looking for a Machine Learning Engineer to build and optimise on-device ML models for health and biosignal monitoring, helping take their technology from proof of concept to a production-ready product.


You’ll be at the forefront of developing models that run efficiently on constrained devices, working closely with the CTO on design, optimisation, and deployment. This is a hands-on technical role that offers full exposure to the early-stage startup experience — from prototyping and experimentation to strategic product decisions.


Key Responsibilities

  • Develop, optimise, and deploy machine learning models for on-device health monitoring.
  • Experiment with architectures and apply techniques such as quantisation, pruning, and compression to improve efficiency.
  • Collaborate with cross-functional teams to take research prototypes into production-ready systems.
  • Contribute to broader technical and product discussions, including data collection, validation, and feature development.
  • Take ownership of projects, working autonomously while supporting the wider engineering team.


What We’re Looking For

  • Ph.D. or Master’s degree in Computer Science, Machine Learning, Information or Biomedical Engineering (or similar).
  • Strong experience with deep learning frameworks (PyTorch/TensorFlow) and Python development.
  • Proven background in on-device ML (TinyML) using frameworks such as TensorFlow Lite, ExecuTorch, or TVM.
  • Solid understanding of model optimisation for constrained hardware environments.
  • Ability to write clean, maintainable, and well-tested code in a collaborative setting.
  • Curiosity, adaptability, and enthusiasm for working in a fast-paced, early-stage environment.
  • Experience working with time-series data such as audio or biosignals.
  • Background in biomedical or signal processing.
  • Experience writing production-level code or integrating models with embedded systems.
  • Previous startup experience or exposure to medical device development.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.