Liquidity risk analytics and reporting - Birmingham - Associate

Goldman Sachs
Birmingham
11 months ago
Create job alert

Background 

Analytics & Reporting (A&R) is a group within Risk Engineering in the Risk Division of Goldman Sachs. The group ensures the firm’s senior leadership, investors and regulators have a complete view of the positional, market, and client activity drivers of the firm’s risk profile allowing them to take actionable and timely risk management decisions.

Risk Engineering is a multidisciplinary group of quantitative experts who are the authoritative producers of independent risk & capital metrics for the firm. Risk Engineering is responsible for modeling, producing, reviewing, interpreting, explaining and communicating risk & capital metrics and analytics used to ensure the firm adheres to its Risk Appetite and maintains the appropriate amount of Risk Capital. Risk Engineering provides risk & capital metrics, analytics and insights to the Chief Risk Officer, senior management, regulators, and other firm stakeholders.

Role Responsibilities 

A&R delivers critical regulatory and risk metrics & analytics across risk domains (market, credit, liquidity, operational, capital) and firm activities via regular reporting, customized risk analysis, systematically generated risk reporting and risk tools​.

A&R has a unique vantage point in the firm’s risk data flows that, when coupled with a deep understanding of client and market activities, allows it to build scalable workflows, processes and procedures to deliver actionable risk insights​. The following are core responsibilities for A&R:

Delivering regular and reliable risk metrics, analytics & insights based on deep understanding of the firm’s businesses and its client activities. Building robust, systematic & efficient workflows, processes and procedures around the production of risk analytics​ for financial & non-financial risk, risk capital and regulatory reporting. Attesting to the quality, timeliness and completeness of the underlying data used to produce these analytics​.

Qualifications, Skills & Aptitude  

Eligible candidates are preferred to have the following: 

Masters or Bachelors degree in a quantitative discipline such as data science, mathematics, physics, econometrics, computer science or engineering. Entrepreneurial, analytically creative, self-motivated and team-oriented. Excellent written, verbal and team-oriented communication skills. Experience with programming for extract transform load (ETL) operations and data analysis (including performance optimization) using languages such as, but not limited to, Python, Java, C++, SQL and R. Experience in developing data visualization and business intelligence solutions using tools such as, but not limited to, Tableau, Alteryx, PowerBI, and front-end technologies and languages. Working knowledge of the financial industry, markets and products and associated non-financial risk. Working knowledge of mathematics including statistics, time series analysis and numerical algorithms.  3+ years of financial or non-financial risk industry experience..

ABOUT GOLDMAN SACHS At Goldman Sachs, we commit our people, capital and ideas to help our clients, shareholders and the communities we serve to grow. Founded in 1869, we are a leading global investment banking, securities and investment management firm. Headquartered in New York, we maintain offices around the world. We believe who you are makes you better at what you do. We're committed to fostering and advancing diversity and inclusion in our own workplace and beyond by ensuring every individual within our firm has a number of opportunities to grow professionally and personally, from our training and development opportunities and firmwide networks to benefits, wellness and personal finance offerings and mindfulness programs. Learn more about our culture, benefits, and people at /careers. We’re committed to finding reasonable accommodations for candidates with special needs or disabilities during our recruiting process.

Related Jobs

View all jobs

Head of Quantitative Analysis

e-Discovery Manager

European Equity Electronic Trading Product Manager

Technical Architect - AI Development - Director | London, UK (Basé à London)

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.

Quantexa Machine‑Learning Jobs in 2025: Your Complete UK Guide to Joining the Decision‑Intelligence Revolution

Money‑laundering rings, sanctioned entities, synthetic identities—complex risks hide in plain sight inside data. Quantexa, a London‑born scale‑up now valued at US $2.2 bn (Series F, August 2024), solves that problem with contextual decision‑intelligence (DI): graph analytics, entity resolution and machine learning stitched into a single platform. Banks, insurers, telecoms and governments from HSBC to HMRC use Quantexa to spot fraud, combat financial crime and optimise customer engagement. With the launch of Quantexa AI Studio in February 2025—bringing generative AI co‑pilots and large‑scale Graph Neural Networks (GNNs) to the platform—the company is hiring at record pace. The Quantexa careers portal lists 450+ open roles worldwide, over 220 in the UK across data science, software engineering, ML Ops and client delivery. Whether you are a graduate data scientist fluent in Python, a Scala veteran who loves Spark or a solutions architect who can turn messy data into knowledge graphs, this guide explains how to land a Quantexa machine‑learning job in 2025.

Machine Learning vs. Deep Learning vs. MLOps Jobs: Which Path Should You Choose?

Machine Learning (ML) continues to transform how businesses operate, from personalised product recommendations to automated fraud detection. As ML adoption accelerates in nearly every industry—finance, healthcare, retail, automotive, and beyond—the demand for professionals with specialised ML skills is surging. Yet as you browse Machine Learning jobs on www.machinelearningjobs.co.uk, you may encounter multiple sub-disciplines, such as Deep Learning and MLOps. Each of these fields offers unique challenges, requires a distinct skill set, and can lead to a rewarding career path. So how do Machine Learning, Deep Learning, and MLOps differ? And which area best aligns with your talents and aspirations? This comprehensive guide will define each field, highlight overlaps and differences, discuss salary ranges and typical responsibilities, and explore real-world examples. By the end, you’ll have a clearer vision of which career track suits you—whether you prefer building foundational ML models, pushing the boundaries of neural network performance, or orchestrating robust ML pipelines at scale.