National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Lila Sciences, Inc. | Cambridge, MA Machine Learning Operations Engineer

Flagship Pioneering
Cambridge
1 week ago
Applications closed

Lila Sciences is a privately held, early-stage technology company pioneering the application of artificial intelligence to transform every aspect of the scientific method. Lila is backed by Flagship Pioneering, which brings the courage, long-term vision, and resources needed to realize unreasonable results. Join our mission-driven team and contribute to the future of science.
Our Life Sciences effort is leveraging AI and high-throughput automation for valuable therapeutic discovery and development across biological modalities. And our Physical Sciences effort is developing a novel AI and data-driven approach to materials discovery and development to accelerate the transition to a sustainable economy.
At Lila, we are uniquely cross-functional and collaborative. We are actively reimagining the way teams work together and communicate. Therefore, we seek individuals with an inclusive mindset and a diversity of thought. Our teams thrive in unstructured and creative environments. All voices are heard because we know that experience comes in many forms, skills are transferable, and passion goes a long way.
If this sounds like an environment you’d love to work in, even if you only have some of the experience listed below, please apply.
The Role

We are seeking a mid-level

Machine Learning Operations Engineer

to join our growing team. In this role, you will focus on unifying data management at Lila by building and maintaining high performance and robust data pipelines to support a variety of machine learning use-cases. You will work closely with both LLM researchers and Applied AI Engineers to ensure the seamless integration of cutting-edge LLM research with scalable, production-ready systems for life science and physical science automation.
Responsibilities:

Design and implement high-performance data processing infrastructure for large language model training
Collaborate with researchers to implement novel data processing pipelines
Develop an easy-to-use, secure, and robust developer experience for researchers and engineers
Contribute to the MLOps best practices at Lila Sciences and write technical documentation for staff
Qualifications:

3+ years of experience in software engineering, with a focus in data engineering or DevOps
Demonstrated experience deploying and maintaining machine learning models in production
Proficiency with Kubernetes, Docker, and Cloud (AWS Preferred)
Proficiency with CI/CD tools and Frameworks (GitHub Actions preferred)
Strong skills with Scripting languages (e.g. Python, Bash), VCS (git), and Linux
Proven experience in cross-functional teams and able to communicate effectively about technical and operational challenges.
Preferred Qualifications:

Proficiency with scalable data frameworks (Spark, Kafka, Flink)
Proven Expertise with Infrastructure as Code and Cloud best practices
Proficiency with monitoring and logging tools (e.g., Prometheus, Grafana)
Working at Lila Sciences, you would have access to advanced technology in the areas of:

AI experimental design and simulation
Automated liquid handling and instrumentation
Location:

Cambridge, MA preferred; open to remote.
More About Flagship Pioneering

Flagship Pioneering is a biotechnology company that invents and builds platform companies, each with the potential for multiple products that transform human health or sustainability. Since its launch in 2000, Flagship has originated and fostered more than 100 scientific ventures, resulting in more than $90 billion in aggregate value. Many of the companies Flagship has founded have addressed humanity’s most urgent challenges: vaccinating billions of people against COVID-19, curing intractable diseases, improving human health, preempting illness, and feeding the world by improving the resiliency and sustainability of agriculture.
Flagship has been recognized twice on FORTUNE’s “Change the World” list, an annual ranking of companies that have made a positive social and environmental impact through activities that are part of their core business strategies, and has been twice named to Fast Company’s annual list of the World’s Most Innovative Companies. Learn more about Flagship at

www.flagshippioneering.com .
Flagship Pioneering and our ecosystem companies are

committed to equal employment opportunity

regardless of race, color, ancestry, religion, sex, national origin, sexual orientation, age, citizenship, marital status, disability, gender identity or Veteran status.
At Flagship, we recognize there is no perfect candidate. If you have some of the experience listed above but not all, please apply anyway. Experience comes in many forms, skills are transferable, and passion goes a long way. We are dedicated to building diverse and inclusive teams and look forward to learning more about your unique background.

#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.