Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Lead R Engineer / Data Scientist - Integrated Pest Management (IPM)

St James's Square
2 days ago
Create job alert

Remote Role – Central London Office
  
This is a fully remote role but you MUST be UK based and not require a visa to work.
  
Lead R Data Science Engineer - Integrated Pest Management (IPM) Research & Solutions
  
The Organisation
  
Our client develops cutting-edge navigator software for the global agricultural sector, helping farmers transition toward more sustainable practices through science-backed analytics. Their software provides direct access to advanced sustainability models and insights.
  
Their Sustainability division consists of specialised Research Software Engineers who transform scientific findings into practical models for farmers and land managers, enabling them to understand their systems better and build more sustainable, profitable operations.
  
Position Overview
  
We're seeking an experienced Data Engineer to join our client's Sustainability team as a lead technical specialist in our R-focused Research Software Engineering group to specialise particularly in Integrated Pest Management. You'll create and maintain the technical infrastructure that enables our sustainability experts and data scientists to develop innovative agricultural sustainability solutions to solve global issues in Integrated Pest Management (IPM).
  
Core Functions

Lead technical best practices across R package design, code architecture, documentation, and dependency management
Establish and oversee versioning and CI/CD systems to enhance team workflows
Guide team members in code architecture, development standards, and deployment processes
Serve as the technical authority for computationally demanding tasks, especially spatial analytics and GIS-based product development
Implement scientific research findings around Integrated Pest Management (IPM) into production-ready code
Collaborate with our Engineering department to align code design, versioning strategies, and release cycles   
Essential Qualifications

Master's degree and / or PhD or equivalent in informatics or life sciences (or bachelor's degree with 5+ years relevant industry experience)
Deep knowledge of R programming and package development
Proven experience managing dependencies and ensuring reproducibility in R production environments
Strong background in version control systems and CI/CD implementation
History of successful collaboration with IT teams on data science workflows
Proficiency with Windows and/or Linux environments
Experience with GIS systems and spatial data analysis
Exceptional problem-solving abilities and adaptability
Leadership experience with strong communication skills
Structured approach to quantitative challenges
Comfort working in a dynamic startup environment   
Qualifications

Microsoft Azure experience, particularly R integration
Application containerization knowledge (Docker, etc.)
Familiarity with Python, JavaScript, C++, bash, or other languages
Web application development experience (React, .NET)
Background in data security and IP protection workflows
Knowledge of environmental sustainability concepts (carbon footprinting, lifecycle analysis, environmental modeling)
Experience in agricultural or land management sectors with a background specifically in Integrated Pest Management (IPM)   
If you are based in the UK and meet the criteria listed then apply now! The Morris Sinclair team will give you a call

Related Jobs

View all jobs

Lead R Data Scientist - Sustainability

Lead Data Engineer

(Senior) Lead Data Engineer

Lead Data Scientist

Data Scientist / Machine Learning Engineer

Staff Data Scientist - Operations

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Best Free Tools & Platforms to Practise Machine Learning Skills in 2025/26

Machine learning (ML) has become one of the most in-demand career paths in technology. From predicting customer behaviour in retail to detecting fraud in banking and enabling medical breakthroughs in healthcare, ML is transforming industries across the UK and beyond. But here’s the truth: employers don’t just want candidates who have read about machine learning in textbooks. They want evidence that you can actually build, train, and deploy models. That means practising with real tools, working with real datasets, and solving real problems. The good news is that you don’t need to pay for expensive software or courses to get started. A wide range of free, open-source tools and platforms allow you to learn machine learning skills hands-on. Whether you’re a beginner or preparing for advanced roles, you can practise everything from simple linear regression to deploying deep learning models — at no cost. In this guide, we’ll explore the best free tools and platforms to practise machine learning skills in 2025, and how to use them effectively to build a portfolio that UK employers will notice.

Top 10 Skills in Machine Learning According to LinkedIn & Indeed Job Postings

Machine learning (ML) is at the forefront of innovation, powering systems in finance, healthcare, retail, logistics, and beyond in the UK. As organisations leverage ML for predictive analytics, automation, and intelligent systems, demand for skilled practitioners continues to grow. So, which skills are most in demand? Drawing on insights from LinkedIn and Indeed, this article outlines the Top 10 machine learning skills UK employers are looking for in 2025. You'll learn how to demonstrate these capabilities through your CV, interviews, and real-world projects.

The Future of Machine Learning Jobs: Careers That Don’t Exist Yet

Machine learning (ML) has become one of the most powerful forces reshaping the modern world. From voice assistants and recommendation engines to fraud detection and medical imaging, it underpins countless applications. ML is no longer confined to research labs—it powers business models, public services, and consumer technologies across the globe. In the UK, demand for machine learning professionals has risen dramatically. Organisations in finance, retail, healthcare, and defence are embedding ML into their operations. Start-ups in Cambridge, London, and Edinburgh are pioneering innovations, while government-backed initiatives aim to position the UK as a global AI leader. Salaries for ML engineers and researchers are among the highest in the tech sector. Yet despite its current importance, machine learning is only at the beginning of its journey. Advances in generative AI, quantum computing, robotics, and ethical governance will reshape the profession. Many of the most vital machine learning jobs of the next two decades don’t exist today. This article explores why new careers will emerge, the roles likely to appear, how today’s roles will evolve, why the UK is well positioned, and how professionals can prepare now.