Lead Machine Learning Engineer (Knowledge Enrichment)

BenchSci Analytics Inc.
London
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Engineer - Research

Senior Machine Learning Engineer

Lead MLOps Engineer

Lead MLOps Engineer

Lead MLOps Engineer

Lead Data Engineer

We are looking for a Senior Machine Learning Engineer to join our new Knowledge Enrichment team at BenchSci.

You will help design and implement ML-based approaches to analyse, extract and generate knowledge from complex biomedical data such as experimental protocols and from results from several heterogeneous sources, including both publicly available data and proprietary internal data, represented in unstructured text and knowledge graphs.

The data will be leveraged in order to enrich BenchSci’s knowledge graph through classification, discovery of high value implicit relationships, predicting novel insights/hypotheses, and other ML techniques. You will collaborate with your team members in applying state of the art ML and graph ML/data science algorithms to this data.

You are comfortable working in a team that pushes the boundaries of what is possible with cutting edge ML/AI, challenges the status quo, is laser focused on value delivery in a fail-fast environment.

You Will:

  • Analyse and manipulate a large, highly-connected biological knowledge graph constructed of data from multiple heterogeneous sources, in order to identify data enrichment opportunities and strategies
  • Work with data and knowledge engineering experts to design and develop knowledge enrichment approaches/strategies that can exploit data within our knowledge graph
  • Provide solutions related to classification, clustering, more-like-this-type querying, discovery of high value implicit relationships, and making inferences across the data that can reveal novel insights
  • Deliver robust, scalable and production-ready ML models, with a focus on optimising performance and efficiency
  • Architect and design ML solutions, from data collection and preparation, model selection, training, fine-tuning and evaluation, to deployment and monitoring
  • Collaborate with your teammates from other functions such as product management, project management and science, as well as other engineering disciplines
  • Sometimes provide technical leadership on Knowledge Enrichment projects that seek to use ML to enrich the data in BenchSci’s Knowledge Graph
  • Work closely with other ML engineers to ensure alignment on technical solutioning and approaches
  • Liaise closely with stakeholders from other functions including product and science
  • Help ensure adoption of ML best practices and state of the art ML approaches at BenchSci
  • Participate in and sometimes lead various agile rituals and related practices

You Have:

  • Minimum 5, ideally 8+ years of experience working as an ML engineer in industry
  • Technical leadership experience, including leading 5-10 ICs on complex projects in industry
  • Degree, preferably PhD, in Software Engineering, Computer Science, or a similar area
  • A proven track record of delivering complex ML projects working alongside high performing ML engineers using agile software development
  • Demonstrable ML proficiency with a deep understanding of how to utilise state of the art NLP and ML techniques
  • Mastery of several ML frameworks and libraries, with the ability to architect complex ML systems from scratch. Extensive experience with Python and PyTorch
  • Track record of successfully delivering robust, scalable and production-ready ML models, with a focus on optimising performance and efficiency
  • Experience with the full ML development lifecycle from architecture and technical design, through data collection and preparation, model selection, training, fine-tuning and evaluation, to deployment and maintenance
  • Strong skills related to implementing solutions leveraging Large Language Models, as well as a deep understanding of how to implement solutions using Retrieval Augmented Generation (RAG) architecture
  • Expertise in graph machine learning (i.e. graph neural networks, graph data science) and practical applications thereof. This is complimented by your experience working with Knowledge Graphs, ideally biological, and a familiarity with biological ontologies
  • Experience with complex problem solving and an eye for details such as scalability and performance of a potential solution
  • Experience with data manipulation and processing, such as SQL, Cypher or Pandas
  • A growth mindset continuously seeking to stay up-to-date with cutting-edge advances in ML/AI, complimented by actively engaging with the ML/AI community

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.