Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Lead Machine Learning Engineer

Burns Sheehan
City of London
1 month ago
Create job alert

Lead/Senior Machine Learning Engineer

  • £110,000-£120,000
  • Bonus up to 10%
  • Shares so as they continue to grow you benefit to
  • Hybrid working - one day a week London (with door always open policy)

Are you a innovative, decisive Machine Learning Engineer looking for your next challenge?

This is your chance to join a marquee name within the fin-tech space looking to add their first Machine Learning Engineer to the business, this will require you to be a key individual contributor with the ability to make decisions yourself.

Within the role you will drive innovation by optimising and automating Pricing processes to enable faster, more accurate decision-making. Your work will focus on developing and maintaining tooling and frameworks that enhance the efficiency of our predictive models, reducing deployment times, increasing scalability, and improving model performance through regular updates and monitoring.

You will work closely with the Data Scientists, Actuaries, and Product team to deliver scalable, production-grade ML systems.

This is a super exciting time to join the business who after a number of years of great success have hit profitability and now want to grow through strategic hiring.

Key Responsibilities

  • Build model lifecycle tooling (deployment, monitoring and alerting) for our predictive models (for example claims cost, conversion, retention, market models)
  • Maintain and improve the development environment (Kubeflow) used by our Data Scientists and Actuaries
  • Develop and maintain pricing analytics tools that enable faster impact assessments, reducing manual work
  • Collaborate with the technical pricing, street pricing and product teams to gather requirements and feedback on tooling and to build impactful technology
  • Communicate complex concepts to technical and non-technical stakeholders through clear storytelling

Required Skills

  • Education: Bachelor's or Master's degree in Statistics, Data Science, Computer Science or related field
  • Experience: Proven experience in ML model lifecycle management

● Core Competencies:

  • Model lifecycle: You've got hands-on experience with managing the ML model lifecycle, including both online and batch processes
  • Statistical Methodology: You have worked with GLMs and other machine learning algorithms and have in-depth knowledge of how they work
  • Python: You have built and deployed production-grade Python applications and you are familiar with data science libraries such as pandas and scikit-learn
  • Tooling & Environment: ○ DevOps: You have experience working with DevOps tooling, such as gitops, Kubernetes, CI/CD tools (we use buildkite) and Docker
  • Cloud: You have worked with cloud-based environments before (we use AWS)
  • SQL: You have a good grasp of SQL, particularly with cloud data warehouses like Snowflake
  • Version control: You are proficient with git

Soft Skills:

  • You are an excellent communicator, with an ability to translate non-technical requirements into clear, actionable pieces of work
  • You have proven your project management skills, with the ability to manage multiple priorities

Interested in finding out more? Click apply to be considered for shortlisting.

Burns Sheehan Ltd will consider applications based only on skills and ability and will not discriminate on any grounds.


#J-18808-Ljbffr

Related Jobs

View all jobs

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Staff/Lead Machine Learning Engineer (CV / Research)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.