Lead Machine Learning Engineer

GE Vernova
Stafford
1 week ago
Create job alert
Lead Machine Learning Engineer at GE Vernova

We are seeking a Lead Machine Learning (ML) Engineer with solid experience typically gained over at least 5 years in large multinational manufacturing environments, ideally within the energy, smart infrastructure, or industrial automation sectors. The ideal candidate has a proven track record of independently leading and delivering ML projects in complex, data-intensive ecosystems.


In this position, you will be responsible for leading end-to-end ML initiatives, from problem framing and data preparation to model development, optimization, and deployment across edge and cloud platforms. You will independently drive ML project execution, ensuring technical excellence, scalability, and measurable business impact. You will collaborate closely with R&D, product teams, and other business units to support the development of innovative, reliable, and high-performance data-driven solutions.


Essential Responsibilities

  • Lead the design, development, and deployment of scalable AI/ML models for grid innovation applications in the energy, smart infrastructure, or industrial automation sectors.
  • Create innovative analytics to optimize grid system performance and product differentiation.
  • Develop AI/ML applications for customer-driven use cases, including predictive maintenance and load forecasting.
  • Validate and verify AI/ML proof‑of‑concepts in real‑world environments, ensuring they meet the diverse needs of our customers.
  • Monitor, maintain, and optimize deployed AI/ML models to continuously enhance their accuracy and performance.
  • Manage the collection, structuring, and analysis of data to enable seamless AI/ML applications.
  • Ensure that models are production‑ready and continuously improve in line with emerging needs and technologies.
  • Embrace MLOps principles to streamline the deployment and updating of ML models in production.
  • Collaborate closely with cross‑functional teams to identify business challenges and deliver AI‑driven solutions that are efficient, equitable, and scalable.
  • Integrate AI/ML solutions effortlessly into grid automation systems, whether in the cloud or at the edge.

Must‑Have Requirements

  • Experience typically gained over +5 years in large multinational companies within the energy sector or related industrial domains such as smart infrastructure or industrial automation.
  • Master’s or PhD in Computer Science, Information Technology, Electrical Engineering, or a related field.
  • Solid foundation in AI/ML techniques, including supervised, unsupervised, and reinforcement learning, deep learning, and large language models (LLMs).
  • Experience with ML frameworks such as TensorFlow, PyTorch, and scikit‑learn.
  • Hands‑on experience deploying ML models in production environments using MLOps principles.
  • Expertise in relevant AI/ML applications, such as predictive maintenance, load forecasting, or optimization.
  • Proficiency in programming languages such as Python, R, MATLAB, or C++.
  • Familiarity with cloud platforms (AWS, Azure, Google Cloud) and microservices architecture.

Nice‑to‑Have Requirements

  • Experience with data modeling, containerisation (Docker, Kubernetes), and distributed computing (Spark, Scala).
  • Familiarity with GraphDB, MongoDB, SQL/NoSQL, and other DBMS technologies.
  • Understanding of system automation, protection, and diagnostics in relevant sectors.
  • Experience with deep learning algorithms, reinforcement learning, NLP, and computer vision in applicable domains.
  • Excellent communication, organisational, and problem‑solving skills, with a strong emphasis on teamwork, collaboration, and fostering inclusive environments.

Relocation Assistance Provided: No


Seniority level

  • Mid‑Senior level

Employment type

  • Full‑time

Job function

  • Engineering and Information Technology

Industries

  • Electric Power Generation

At GE Vernova – Grid Automation

At GE Vernova - Grid Automation, you will have the opportunity to work on cutting‑edge projects that shape the future of energy. We offer a collaborative environment where your expertise will be valued, and your contributions will make a tangible impact. Join us and be part of a team that is driving innovation and excellence in control systems.


About GEV Grid Solutions

At GEV Grid Solutions we are electrifying the world with advanced grid technologies. As leaders in the energy space our goal is to accelerate the transition for a more energy efficient grid to fulfil the needs of tomorrow. With a focus on growth and sustainability GE Grid Solutions plays a pivotal role in integrating renewables onto the grid to drive carbon neutral. In Grid Solutions we help enable the transition for a greener more reliable grid. GE Grid Solutions has the most advanced and comprehensive product and solutions portfolio within the energy sector.


Why We Come To Work

At GEV, our engineers are always up for the challenge – and we’re always driven to find the best solution. Our projects are unique and interesting, and you’ll need to bring a solution‑focused, positive approach to each one to do your best. Surrounded by committed, loyal colleagues, if you can dare to bring your ingenuity and desire to make an impact, you’ll be exposed to game‑changing, diverse projects that truly allow you to play your part in the energy transition.


What We Offer

A key role in a dynamic, international working environment with a large degree of flexibility of work agreements. Competitive benefits, and great development opportunities – including private health insurance.


Referrals increase your chances of interviewing at GE Vernova by 2x


#J-18808-Ljbffr

Related Jobs

View all jobs

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Lead Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.