Lead Enterprise Architect, Advanced Analytics

London
1 week ago
Create job alert

Job Title: Lead Enterprise Architect - Advanced Analytics
Location: Hybrid - London office in Southwark Bridge 2 days per week
Duration: 3 Months
Clearance: BPSS - Sole UK National
Rate: £650 per day - via Umbrella Only

Job description:
As the Lead Enterprise Architect for our Advanced Analytics business unit, you will lead the development of innovative tools and systems that power data-driven insights and analytics across the organisation. Your leadership will play a pivotal role in driving the next generation of advanced analytics capabilities, ensuring world-class performance, scalability, and efficiency.
This high-visibility role offers a broad scope of responsibility, where you'll influence the direction of our analytics solutions and shape the way we leverage data to optimise business outcomes.
You will work closely with passionate and dedicated colleagues and clients, all committed to driving transformation in the digital media space. Our open, innovative workspace fosters creativity and encourages new ideas, making it easy for everyone to contribute to our shared success.

What You'll Do:

Lead the development and enhancement of advanced analytics tools, focusing on data processing, integration, and optimization in a fast-paced, agile environment.
Manage, mentor, and grow a team of skilled engineers, providing guidance through regular performance reviews and career development opportunities.
Ensure seamless collaboration with cross-functional teams (product, engineering, business) to translate business objectives into actionable technical solutions.
Remove blockers and resolve technical challenges for engineering teams, ensuring smooth execution of analytics initiatives.
Actively participate in code reviews, design discussions, and ensure the implementation of best practices for scalable, future-proof solutions.
Champion agile methodologies, driving teams to deliver high-quality products on time and within budget.
Oversee the full SDLC (planning, design, development, QA, CI/CD, and production support) to ensure timely and efficient delivery of analytics solutions.
Provide second-level support for production systems, ensuring the stability, reliability, and performance of analytics platforms.
Collaborate with architects and other engineering leaders to establish standards, process documentation, and conduct impact assessments.
Manage and resolve escalations effectively, ensuring smooth operations and minimal disruption to project timelines.
What You'll Need:

3+ years of experience in a leadership role with 5+ years of hands-on software engineering experience.
Strong expertise in software architecture, data pipeline design, and scalable analytics systems.
Proven experience with integrating and automating business workflows, including data-driven processes and system integrations.
Familiarity with analytics platforms and tools such as GCP (BigQuery), AWS (Glue, Athena), or Azure Databricks.
Proficiency in Python or .NET, with experience in both or the ability to quickly learn new technologies.
Experience with front-end frameworks (Angular/React) and back-end development (API management, microservices).
Strong knowledge of SQL, data modelling, and database optimization techniques.
Hands-on experience with Docker, cloud platforms (GCP, AWS, Azure), and CI/CD pipelines.
Familiarity with event-driven architectures and building real-time data analytics solutions.
Experience working with large-scale, high-concurrency systems and ensuring high availability.
Previous experience managing globally distributed teams, fostering collaboration across time zones.
Experience in building machine learning solutions and data-driven software is a plus.
You Have a Passion For:

Solving complex data challenges and turning raw data into actionable business insights.
Collaborating with business stakeholders to identify analytics opportunities and optimise business processes.
Innovating and developing solutions that drive data efficiency and performance.
Leading teams with empathy, recognising gaps in knowledge and proactively pursuing development opportunities.
Agile development practices, continuous integration, automation, and delivering high-quality analytics solutions.
Communicating effectively with business users, product managers, and senior leadership to ensure alignment on objectives and technical strategies.
Working in fast-paced, entrepreneurial environments, particularly in data-driven or analytics-heavy industries

Related Jobs

View all jobs

Data Engineer III, Data & AI, Customer EngagementTechnology ...

Data Governance Analyst

Data & Analytics Platform Architect

Lead Data Engineer

Lead Data Engineer (AD -Consulting) - Exclusive

Lead Data Engineer (AD -Consulting) - Exclusive

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Rural-Remote Machine Learning Jobs: Finding Balance Beyond the Big Cities

Over the past decade, machine learning (ML) has transformed from a niche research domain into a pervasive technology underpinning everything from recommendation systems and voice assistants to financial forecasting and autonomous vehicles. Historically, the UK’s major tech hubs—particularly London—have been magnets for top ML talent and corporate headquarters. However, remote work has become mainstream, and many ML professionals are realising they can excel in their field while living far beyond the city limits. At MachineLearningJobs.co.uk, we’ve observed a growing interest in positions that allow for a rural lifestyle or a coastal environment, often reflected in search terms like “ML remote countryside” or “tech jobs by the sea.” This surge is no coincidence. Flexible work policies, better rural broadband, and the nature of machine learning tasks—much of which can be done through cloud platforms—are bringing new opportunities to those who wish to swap urban hustle for fresh air and scenic views. Whether you’re a data scientist, ML engineer, researcher, or product manager, a rural or seaside move could reinvigorate your work-life balance. In this article, we’ll unpack why rural-remote ML jobs are on the rise, how you can navigate the challenges of leaving the city, and what you need to do to thrive in a machine learning career beyond the M25. If you’ve dreamt of looking up from your laptop to rolling fields or ocean waves, keep reading—your rural ML role might be closer than you think.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!