National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Lead Engineer / Tech Lead – Python, Microservices, CI/CD, AI, ML, Early-Stage Startup. UK

WMtech
Newcastle upon Tyne
2 months ago
Applications closed

Related Jobs

View all jobs

Senior Software Engineer – API & ML Infrastructure

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer - KPMG Curve

Lead Data Engineer - KPMG Curve

Lead Engineer / Tech Lead – Python, Microservices, CI/CD, AI, ML, Early-Stage Startup, UK


About the Role


A mission-driven, early-stage startup is looking for aLead Engineer / Tech Leadto join its growing team. This is a hands-on leadership role where you’ll help shape a cutting-edge AI platform designed to drive real-world behaviour change and improve human performance and wellbeing.


Backed by strong funding, this product-focused team of senior engineers operates in a low-ego, high-collaboration culture. The platform's first focus is on employee wellbeing in high-stress industries—and the mission is just getting started.


You’ll lead a cross-functional team of backend and machine learning engineers, guiding architecture, mentoring team members, and staying close to the code. This is a rare opportunity to build both product and team in a fast-moving environment with purpose at its core.


What You’ll Do


  • Lead and mentor a senior engineering team working across backend, ML, and infrastructure.
  • Own technical direction for core systems, focusing on scalability, performance, and reliability.
  • Write clean, maintainable code and contribute actively to the codebase.
  • Define and uphold engineering best practices (code quality, CI/CD, observability, etc.).
  • Collaborate closely with the CTO and product team to align technical delivery with strategic goals.
  • Continuously improve team operations, development workflows, and developer experience.
  • Play a key role in hiring and onboarding as the team grows.


What We’re Looking For

  • 7+ years of commercial software engineering experience with a strong backend focus.
  • Proven ability to lead engineering projects and/or teams.
  • Experience in fast-paced or startup environments.
  • BSc in Computer Science, Data Science, or related technical discipline.
  • Strong communication skills and a bias toward action.


Technologies You’ll Work With

Experience in some or most of the following:


  • Languages/Frameworks:Python, FastAPI, Pydantic, Streamlit (for internal tools)
  • Architecture:Microservices, RESTful APIs, async programming
  • Infrastructure:Docker, Terraform, GitHub Actions, GCP (preferred)
  • Datastores:MongoDB, Redis
  • Monitoring/Tooling:Prometheus, Grafana, Sentry


The role is remote with occasional travel


Ready to lead and build with purpose?

If you're excited by the idea of applying your engineering skills to something meaningful, please send your CV to


WMtech


WMtech is trusted by leaders in the Cyber Security, AI and Enterprise Software sectors to advise on talent strategy specifically for Start-Ups. Our clients are heavily VC backed, unicorn status, pre-IPO start-ups with pioneering technology.


WMTech is an equal opportunity employer and does not discriminate in employment on the basis of race, color, religion, sex (including pregnancy and gender identity), national origin, political affiliation, sexual orientation, marital status, disability, genetic information, age, membership in an employee organization, retaliation, parental status, military service, or other non-merit factor

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.