Lead Engineer / Tech Lead – Python, Microservices, CI/CD, AI, ML, Early-Stage Startup. UK

WMtech
Glasgow
9 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer - Tech Lead

Tech Lead / Lead Data Engineer - Outside IR35 - SC + NPPV3 Cleared

Data Engineer Manager

Data Engineer Manager

Tech Lead - Data Engineering

Lead Machine Learning Engineer

Lead Engineer / Tech Lead – Python, Microservices, CI/CD, AI, ML, Early-Stage Startup, UK


About the Role


A mission-driven, early-stage startup is looking for aLead Engineer / Tech Leadto join its growing team. This is a hands-on leadership role where you’ll help shape a cutting-edge AI platform designed to drive real-world behaviour change and improve human performance and wellbeing.


Backed by strong funding, this product-focused team of senior engineers operates in a low-ego, high-collaboration culture. The platform's first focus is on employee wellbeing in high-stress industries—and the mission is just getting started.


You’ll lead a cross-functional team of backend and machine learning engineers, guiding architecture, mentoring team members, and staying close to the code. This is a rare opportunity to build both product and team in a fast-moving environment with purpose at its core.


What You’ll Do


  • Lead and mentor a senior engineering team working across backend, ML, and infrastructure.
  • Own technical direction for core systems, focusing on scalability, performance, and reliability.
  • Write clean, maintainable code and contribute actively to the codebase.
  • Define and uphold engineering best practices (code quality, CI/CD, observability, etc.).
  • Collaborate closely with the CTO and product team to align technical delivery with strategic goals.
  • Continuously improve team operations, development workflows, and developer experience.
  • Play a key role in hiring and onboarding as the team grows.


What We’re Looking For

  • 7+ years of commercial software engineering experience with a strong backend focus.
  • Proven ability to lead engineering projects and/or teams.
  • Experience in fast-paced or startup environments.
  • BSc in Computer Science, Data Science, or related technical discipline.
  • Strong communication skills and a bias toward action.


Technologies You’ll Work With

Experience in some or most of the following:


  • Languages/Frameworks:Python, FastAPI, Pydantic, Streamlit (for internal tools)
  • Architecture:Microservices, RESTful APIs, async programming
  • Infrastructure:Docker, Terraform, GitHub Actions, GCP (preferred)
  • Datastores:MongoDB, Redis
  • Monitoring/Tooling:Prometheus, Grafana, Sentry


The role is remote with occasional travel


Ready to lead and build with purpose?

If you're excited by the idea of applying your engineering skills to something meaningful, please send your CV to


WMtech


WMtech is trusted by leaders in the Cyber Security, AI and Enterprise Software sectors to advise on talent strategy specifically for Start-Ups. Our clients are heavily VC backed, unicorn status, pre-IPO start-ups with pioneering technology.


WMTech is an equal opportunity employer and does not discriminate in employment on the basis of race, color, religion, sex (including pregnancy and gender identity), national origin, political affiliation, sexual orientation, marital status, disability, genetic information, age, membership in an employee organization, retaliation, parental status, military service, or other non-merit factor

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.