Lead Data Scientist (H/F)

LexisNexis Risk Solutions
City of London
3 weeks ago
Create job alert

.En tant que Lead data Scientist, vous jouerez un rôle clé dans la définition de l’avenir de nos capacités d’intelligence artificielle à travers plusieurs produits de notre portefeuille Fraude, Identité et Conformité en matière de criminalité financière. Vous participerez à l’idéation, la recherche, la modélisation et la mise en œuvre de nouvelles fonctionnalités basées sur l’IA — avec un fort accent sur les modèles de langage (LLM), l’IA générative et le Machine Learning traditionnel.* Une expérience dans une start-up ou au sein d’une équipe interfonctionnelle est un plus.* Une expérience en Natural Language Processing (NLP) est un plus.* Excellentes compétences en programmation Python, incluant le traitement, l’analyse et la visualisation de données.* Solide expérience avec SQL et les requêtes de bases de données pour l’exploration et la préparation des données.* Familiarité avec les plates-formes cloud (AWS, Azure, …) et les outils data modernes (Snowflake, Databricks, …).* Capacité démontrée à résoudre des problèmes ambigus, à développer des stratégies fondées sur les données et à définir des critères de succès mesurables.* Une connaissance des langages de programmation orientés objet ou fonctionnels tels que C++, Java ou Rust est un plus.* Une expérience avec les outils et pratiques d’ingénierie logicielle (ex. Docker, Kubernetes, Git, pipelines CI/CD) est un atout.* Connaissance des pratiques ML Ops, du déploiement et du suivi des modèles.* Compréhension approfondie des méthodes de prévention de la fraude, d’authentification ou de vérification d’identité.* Excellentes compétences en communication, tant avec des interlocuteurs techniques que non techniques.* Très bon niveau d’anglais (C1/C2) et expérience confirmée dans des environnements internationaux et multiculturels.* Capacité à collaborer à travers différents fuseaux horaires et à voyager occasionnellement selon les besoins.4 ans ou plus d’expérience dans la conception, l’entraînement et l’évaluation de modèles de Deep Learning et de Machine Learning avec des outils tels que PyTorch, TensorFlow, scikit-learn, HuggingFace ou LangChain.As a Lead Data Scientist, you will play a key role in shaping the future of our AI capabilities across multiple products within our Fraud, Identity, and Financial Crime Compliance portfolio. You will participate in the ideation, research, modeling, and implementation of new AI-driven features — with a strong focus on Large Language Models (LLMs), Generative AI, and advanced Machine Learning.* Experience in a start-up or a cross-functional team is a plus* Experience in Natural Language Processing (NLP) is a plus* Strong programming skills in Python, including data wrangling, analysis, and visualization.* Solid experience with SQL and database querying for data exploration and preparation.* Familiarity with cloud platforms (AWS, Azure, …) and modern data stack tools (Snowflake, Databricks, …)* Proven ability to tackle ambiguous problems, develop data-informed strategies, and define measurable success criteria.* Familiarity with object-oriented or functional programming languages such as C++, Java, or Rust is a plus.* Experience with software engineering tools and practices (e.g. Docker, Kubernetes, Git, CI/CD pipelines) is a plus.* Knowledge of ML Ops, model deployment, and monitoring frameworks.* Understanding of fraud prevention, authentication, or identity verification methodologies is a plus.* Excellent communication skills with both technical and non-technical stakeholders.* Strong English proficiency (C1/C2) and proven experience working in multicultural, international environments.* Ability to collaborate across time zones and travel occasionally as required.4+ years of experience building, training, and evaluating Deep Learning and Machine Learning models using tools such as PyTorch, TensorFlow, scikit-learn, HuggingFace, or LangChain.Criminals may pose as recruiters asking for money or personal information. We never request money or banking details from job applicants. Learn more about spotting and avoiding scams **.**RELX is a global provider of information-based analytics and decision tools for professional and business customers, enabling them to make better decisions, get better results and be more productive.Our purpose is to benefit society by developing products that help researchers advance scientific knowledge; doctors and nurses improve the lives of patients; lawyers promote the rule of law and achieve justice and fair results for their clients; businesses and governments prevent fraud; consumers access financial services and get fair prices on insurance; and customers learn about markets and complete transactions.Our purpose guides our actions beyond the products that we develop. It defines us as a company. Every day across RELX our employees are inspired to undertake initiatives that make unique contributions to society and the communities in which we operate.
#J-18808-Ljbffr

Related Jobs

View all jobs

Lead Data Scientist

Lead Data Scientist - Remote

Lead Data Scientist - Remote

Lead Data Scientist - Remote

Lead Data Scientist

Lead Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.