Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Lead Data Scientist (H/F)

LexisNexis Risk Solutions
City of London
3 weeks ago
Applications closed

Related Jobs

View all jobs

Lead Data Scientist - Remote

Lead Data Scientist

Lead Data Scientist - Agentic AI

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

.En tant que Lead data Scientist, vous jouerez un rôle clé dans la définition de l’avenir de nos capacités d’intelligence artificielle à travers plusieurs produits de notre portefeuille Fraude, Identité et Conformité en matière de criminalité financière. Vous participerez à l’idéation, la recherche, la modélisation et la mise en œuvre de nouvelles fonctionnalités basées sur l’IA — avec un fort accent sur les modèles de langage (LLM), l’IA générative et le Machine Learning traditionnel.* Une expérience dans une start-up ou au sein d’une équipe interfonctionnelle est un plus.* Une expérience en Natural Language Processing (NLP) est un plus.* Excellentes compétences en programmation Python, incluant le traitement, l’analyse et la visualisation de données.* Solide expérience avec SQL et les requêtes de bases de données pour l’exploration et la préparation des données.* Familiarité avec les plates-formes cloud (AWS, Azure, …) et les outils data modernes (Snowflake, Databricks, …).* Capacité démontrée à résoudre des problèmes ambigus, à développer des stratégies fondées sur les données et à définir des critères de succès mesurables.* Une connaissance des langages de programmation orientés objet ou fonctionnels tels que C++, Java ou Rust est un plus.* Une expérience avec les outils et pratiques d’ingénierie logicielle (ex. Docker, Kubernetes, Git, pipelines CI/CD) est un atout.* Connaissance des pratiques ML Ops, du déploiement et du suivi des modèles.* Compréhension approfondie des méthodes de prévention de la fraude, d’authentification ou de vérification d’identité.* Excellentes compétences en communication, tant avec des interlocuteurs techniques que non techniques.* Très bon niveau d’anglais (C1/C2) et expérience confirmée dans des environnements internationaux et multiculturels.* Capacité à collaborer à travers différents fuseaux horaires et à voyager occasionnellement selon les besoins.4 ans ou plus d’expérience dans la conception, l’entraînement et l’évaluation de modèles de Deep Learning et de Machine Learning avec des outils tels que PyTorch, TensorFlow, scikit-learn, HuggingFace ou LangChain.As a Lead Data Scientist, you will play a key role in shaping the future of our AI capabilities across multiple products within our Fraud, Identity, and Financial Crime Compliance portfolio. You will participate in the ideation, research, modeling, and implementation of new AI-driven features — with a strong focus on Large Language Models (LLMs), Generative AI, and advanced Machine Learning.* Experience in a start-up or a cross-functional team is a plus* Experience in Natural Language Processing (NLP) is a plus* Strong programming skills in Python, including data wrangling, analysis, and visualization.* Solid experience with SQL and database querying for data exploration and preparation.* Familiarity with cloud platforms (AWS, Azure, …) and modern data stack tools (Snowflake, Databricks, …)* Proven ability to tackle ambiguous problems, develop data-informed strategies, and define measurable success criteria.* Familiarity with object-oriented or functional programming languages such as C++, Java, or Rust is a plus.* Experience with software engineering tools and practices (e.g. Docker, Kubernetes, Git, CI/CD pipelines) is a plus.* Knowledge of ML Ops, model deployment, and monitoring frameworks.* Understanding of fraud prevention, authentication, or identity verification methodologies is a plus.* Excellent communication skills with both technical and non-technical stakeholders.* Strong English proficiency (C1/C2) and proven experience working in multicultural, international environments.* Ability to collaborate across time zones and travel occasionally as required.4+ years of experience building, training, and evaluating Deep Learning and Machine Learning models using tools such as PyTorch, TensorFlow, scikit-learn, HuggingFace, or LangChain.Criminals may pose as recruiters asking for money or personal information. We never request money or banking details from job applicants. Learn more about spotting and avoiding scams **.**RELX is a global provider of information-based analytics and decision tools for professional and business customers, enabling them to make better decisions, get better results and be more productive.Our purpose is to benefit society by developing products that help researchers advance scientific knowledge; doctors and nurses improve the lives of patients; lawyers promote the rule of law and achieve justice and fair results for their clients; businesses and governments prevent fraud; consumers access financial services and get fair prices on insurance; and customers learn about markets and complete transactions.Our purpose guides our actions beyond the products that we develop. It defines us as a company. Every day across RELX our employees are inspired to undertake initiatives that make unique contributions to society and the communities in which we operate.
#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.