National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Lead, Data Scientist (Deep Learning), Peacock Video Streaming Service

NBCUniversal
Brentford
1 month ago
Applications closed

Related Jobs

View all jobs

Lead Data Scientist

Lead Data Scientist (Equity Only) - 1%

Lead Data Scientist (Equity Only) - 1%

Lead Data Scientist - UK 12 Month FTC

Lead Data Scientist - Marketing Science

Lead Data Scientist - Fraud

Job Description

As part of the Peacock Data Science team, the Lead Data Scientist will be responsible for creating recommendation and personalization solutions for one or more verticals of Peacock Video Streaming Service.

Responsibilities include, but are not limited to:

Work with a group of data scientists in the development of recommendation and personalization models using statistical, machine learning and data mining methodologies. Drive the collection and manipulation of new data and the refinement of existing data sources. Translate complex problems and solutions to all levels of the organization. Collaborate with software and data architects in building real-time and automated batch implementations of the data science solutions and integrating them into the streaming service architecture. Drive innovation of the statistical and machine learning methodologies and tools used by the team.

Qualifications

Advanced (Master or PhD) degree with specialization in Statistics, Computer Science, Data Science, Economics, Mathematics, Operations Research or another quantitative field or equivalent. Experience in advanced analytics in industry or research. Experience with commercial recommender systems or a lead role in an advanced research recommender system project. Working experience with deep learning and graph methodologies in machine learning. Strong experience with deep learning using TensorFlow. Experience implementing scalable, distributed, and highly available systems using Google Could Platform. Experience with Google AI Platform/Vertex AI, Kubeflow and Airflow. Proficient in Python. Java or Scala is a plus. Experience in data processing using SQL and PySpark. Experience working with foundation models and other GenAI technologies

Desired Characteristics:

Experience in media analytics and application of data science to the content streaming and TV industry. Good understanding of reinforcement learning algorithms. Experience with multi-billion record datasets and leading projects that span the disciplines of data science and data engineering Knowledge of enterprise-level digital analytics platforms ( Adobe Analytics, Google Analytics, etc.) Experience with large-scale video assets Team oriented and collaborative approach with a demonstrated aptitude and willingness to learn new methods and tools

Additional Information

As part of our selection process, external candidates may be required to attend an in-person interview with an NBCUniversal employee at one of our locations prior to a hiring decision. NBCUniversal's policy is to provide equal employment opportunities to all applicants and employees without regard to race, color, religion, creed, gender, gender identity or expression, age, national origin or ancestry, citizenship, disability, sexual orientation, marital status, pregnancy, veteran status, membership in the uniformed services, genetic information, or any other basis protected by applicable law.

If you are a qualified individual with a disability or a disabled veteran and require support throughout the application and/or recruitment process as a result of your disability, you have the right to request a reasonable accommodation. You can submit your request to AccessibilityS.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.