Lead, Data Scientist (Deep Learning), Peacock Video Streaming Service

NBCUniversal
Brentford
8 months ago
Applications closed

Related Jobs

View all jobs

Lead Data Scientist: Causal Inference & Uncertainty

Lead Data Scientist, AI & Innovation for Public Services

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist, Client Analytics & ML Solutions

Senior Data Scientist — Lead Education Data & AI (Remote)

Job Description

As part of the Peacock Data Science team, the Lead Data Scientist will be responsible for creating recommendation and personalization solutions for one or more verticals of Peacock Video Streaming Service.

Responsibilities include, but are not limited to:

Work with a group of data scientists in the development of recommendation and personalization models using statistical, machine learning and data mining methodologies. Drive the collection and manipulation of new data and the refinement of existing data sources. Translate complex problems and solutions to all levels of the organization. Collaborate with software and data architects in building real-time and automated batch implementations of the data science solutions and integrating them into the streaming service architecture. Drive innovation of the statistical and machine learning methodologies and tools used by the team.

Qualifications

Advanced (Master or PhD) degree with specialization in Statistics, Computer Science, Data Science, Economics, Mathematics, Operations Research or another quantitative field or equivalent. Experience in advanced analytics in industry or research. Experience with commercial recommender systems or a lead role in an advanced research recommender system project. Working experience with deep learning and graph methodologies in machine learning. Strong experience with deep learning using TensorFlow. Experience implementing scalable, distributed, and highly available systems using Google Could Platform. Experience with Google AI Platform/Vertex AI, Kubeflow and Airflow. Proficient in Python. Java or Scala is a plus. Experience in data processing using SQL and PySpark. Experience working with foundation models and other GenAI technologies

Desired Characteristics:

Experience in media analytics and application of data science to the content streaming and TV industry. Good understanding of reinforcement learning algorithms. Experience with multi-billion record datasets and leading projects that span the disciplines of data science and data engineering Knowledge of enterprise-level digital analytics platforms ( Adobe Analytics, Google Analytics, etc.) Experience with large-scale video assets Team oriented and collaborative approach with a demonstrated aptitude and willingness to learn new methods and tools

Additional Information

As part of our selection process, external candidates may be required to attend an in-person interview with an NBCUniversal employee at one of our locations prior to a hiring decision. NBCUniversal's policy is to provide equal employment opportunities to all applicants and employees without regard to race, color, religion, creed, gender, gender identity or expression, age, national origin or ancestry, citizenship, disability, sexual orientation, marital status, pregnancy, veteran status, membership in the uniformed services, genetic information, or any other basis protected by applicable law.

If you are a qualified individual with a disability or a disabled veteran and require support throughout the application and/or recruitment process as a result of your disability, you have the right to request a reasonable accommodation. You can submit your request to AccessibilityS.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.