Lead, Data Scientist (Deep Learning), Peacock Video Streaming Service

NBCUniversal
Brentford
1 month ago
Create job alert

Job Description

As part of the Peacock Data Science team, the Lead Data Scientist will be responsible for creating recommendation and personalization solutions for one or more verticals of Peacock Video Streaming Service.

Responsibilities include, but are not limited to:

  • Work with a group of data scientists in the development of recommendation and personalization models using statistical, machine learning and data mining methodologies.
  • Drive the collection and manipulation of new data and the refinement of existing data sources.
  • Translate complex problems and solutions to all levels of the organization.
  • Collaborate with software and data architects in building real-time and automated batch implementations of the data science solutions and integrating them into the streaming service architecture.
  • Drive innovation of the statistical and machine learning methodologies and tools used by the team.


Qualifications

  • Advanced (Master or PhD) degree with specialization in Statistics, Computer Science, Data Science, Economics, Mathematics, Operations Research or another quantitative field or equivalent.
  • Experience in advanced analytics in industry or research.
  • Experience with commercial recommender systems or a lead role in an advanced research recommender system project.
  • Working experience with deep learning and graph methodologies in machine learning. Strong experience with deep learning using TensorFlow.
  • Experience implementing scalable, distributed, and highly available systems using Google Could Platform.
  • Experience with Google AI Platform/Vertex AI, Kubeflow and Airflow.
  • Proficient in Python. Java or Scala is a plus.
  • Experience in data processing using SQL and PySpark.
  • Experience working with foundation models and other GenAI technologies

Desired Characteristics:

  • Experience in media analytics and application of data science to the content streaming and TV industry.
  • Good understanding of reinforcement learning algorithms.
  • Experience with multi-billion record datasets and leading projects that span the disciplines of data science and data engineering
  • Knowledge of enterprise-level digital analytics platforms (e.g. Adobe Analytics, Google Analytics, etc.)
  • Experience with large-scale video assets
  • Team oriented and collaborative approach with a demonstrated aptitude and willingness to learn new methods and tools



Additional Information

As part of our selection process, external candidates may be required to attend an in-person interview with an NBCUniversal employee at one of our locations prior to a hiring decision. NBCUniversal's policy is to provide equal employment opportunities to all applicants and employees without regard to race, color, religion, creed, gender, gender identity or expression, age, national origin or ancestry, citizenship, disability, sexual orientation, marital status, pregnancy, veteran status, membership in the uniformed services, genetic information, or any other basis protected by applicable law.

If you are a qualified individual with a disability or a disabled veteran and require support throughout the application and/or recruitment process as a result of your disability, you have the right to request a reasonable accommodation. You can submit your request to .

Related Jobs

View all jobs

Data Scientist

Senior Data Scientist - Outside IR35 Contract

Principal Data Scientist

Principal Data Scientist - NLP

Principal Data Scientist and Senior Data Engineer

Senior Data Scientist – Machine Learning -  Defence –Eligible for SC

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.

Quantexa Machine‑Learning Jobs in 2025: Your Complete UK Guide to Joining the Decision‑Intelligence Revolution

Money‑laundering rings, sanctioned entities, synthetic identities—complex risks hide in plain sight inside data. Quantexa, a London‑born scale‑up now valued at US $2.2 bn (Series F, August 2024), solves that problem with contextual decision‑intelligence (DI): graph analytics, entity resolution and machine learning stitched into a single platform. Banks, insurers, telecoms and governments from HSBC to HMRC use Quantexa to spot fraud, combat financial crime and optimise customer engagement. With the launch of Quantexa AI Studio in February 2025—bringing generative AI co‑pilots and large‑scale Graph Neural Networks (GNNs) to the platform—the company is hiring at record pace. The Quantexa careers portal lists 450+ open roles worldwide, over 220 in the UK across data science, software engineering, ML Ops and client delivery. Whether you are a graduate data scientist fluent in Python, a Scala veteran who loves Spark or a solutions architect who can turn messy data into knowledge graphs, this guide explains how to land a Quantexa machine‑learning job in 2025.