Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Lead, Data Scientist (Deep Learning), Peacock Video Streaming Service

NBCUniversal
Brentford
6 months ago
Applications closed

Related Jobs

View all jobs

Lead Data Scientist

Lead Data Scientist: AI for Fraud & Identity

Lead Data Scientist - Healthcare

Data Scientist Project Lead

Lead AI & Data Science for Global Asset Management (Hybrid)

Lead Deep Learning Scientist — LLMs & Time Series

Job Description

As part of the Peacock Data Science team, the Lead Data Scientist will be responsible for creating recommendation and personalization solutions for one or more verticals of Peacock Video Streaming Service.

Responsibilities include, but are not limited to:

Work with a group of data scientists in the development of recommendation and personalization models using statistical, machine learning and data mining methodologies. Drive the collection and manipulation of new data and the refinement of existing data sources. Translate complex problems and solutions to all levels of the organization. Collaborate with software and data architects in building real-time and automated batch implementations of the data science solutions and integrating them into the streaming service architecture. Drive innovation of the statistical and machine learning methodologies and tools used by the team.

Qualifications

Advanced (Master or PhD) degree with specialization in Statistics, Computer Science, Data Science, Economics, Mathematics, Operations Research or another quantitative field or equivalent. Experience in advanced analytics in industry or research. Experience with commercial recommender systems or a lead role in an advanced research recommender system project. Working experience with deep learning and graph methodologies in machine learning. Strong experience with deep learning using TensorFlow. Experience implementing scalable, distributed, and highly available systems using Google Could Platform. Experience with Google AI Platform/Vertex AI, Kubeflow and Airflow. Proficient in Python. Java or Scala is a plus. Experience in data processing using SQL and PySpark. Experience working with foundation models and other GenAI technologies

Desired Characteristics:

Experience in media analytics and application of data science to the content streaming and TV industry. Good understanding of reinforcement learning algorithms. Experience with multi-billion record datasets and leading projects that span the disciplines of data science and data engineering Knowledge of enterprise-level digital analytics platforms ( Adobe Analytics, Google Analytics, etc.) Experience with large-scale video assets Team oriented and collaborative approach with a demonstrated aptitude and willingness to learn new methods and tools

Additional Information

As part of our selection process, external candidates may be required to attend an in-person interview with an NBCUniversal employee at one of our locations prior to a hiring decision. NBCUniversal's policy is to provide equal employment opportunities to all applicants and employees without regard to race, color, religion, creed, gender, gender identity or expression, age, national origin or ancestry, citizenship, disability, sexual orientation, marital status, pregnancy, veteran status, membership in the uniformed services, genetic information, or any other basis protected by applicable law.

If you are a qualified individual with a disability or a disabled veteran and require support throughout the application and/or recruitment process as a result of your disability, you have the right to request a reasonable accommodation. You can submit your request to AccessibilityS.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.