Lead Data Scientist

Cox Automotive
Accrington
9 months ago
Applications closed

Related Jobs

View all jobs

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist - Remote

Lead Data Scientist - Drug Discovery...

Lead Data Scientist

Lead Data Scientist

Job Title:Lead Data Scientist – Decisioning & AI 

Location: Hub based (Leeds, Manchester with European travel)

Contract: Full-Time 

About Cox Automotive Europe

Cox Automotive Europe is leading the digital transformation of the automotive industry, empowering dealers, OEMs, and buyers with cutting-edge tools that redefine how vehicles are managed, traded, and optimised. Our pan-European programme includes a groundbreaking Decision Engine, an AI-driven platform that turns complex data into actionable insights, enabling smarter decisions across inventory, pricing, and supply chains. Join us to shape the future of automotive intelligence. 

Role Overview 

As Lead Data Scientist, you’ll lead the development of machine learning models that power the Decision Engine, drive strategic AI initiatives, and mentor a team of data scientists (including a Senior Data Scientist). You’ll bridge complex data (vehicle lifecycle, marketplace behavior, third-party signals) with business outcomes, ensuring our models deliver measurable ROI for clients while adhering to ethical AI practices. 

Key Responsibilities

1. Technical Leadership 

- Architect and deploy scalable ML models (e.g., dynamic pricing, demand forecasting, desirability scoring) using Python, PyTorch/TensorFlow, and cloud ML tools (AWS SageMaker, Databricks). 

- Define best practices for model governance, monitoring, and retraining in production. 

- Lead R&D into emerging techniques (e.g., graph neural networks for inventory routing, GenAI for buyer personalisation). 

 2. Team Management & Mentorship 

- Manage and mentor a Senior Data Scientist, fostering growth in model optimisation, MLOps, and stakeholder collaboration. 

- Coordinate with Data Engineering to ensure seamless data pipelines for model inputs (e.g., real-time inventory feeds, third-party economic data). 

 3. Cross-Functional Collaboration 

- Partner with Product Managers to translate business problems into ML solutions (e.g., “How can we reduce France’s overstock by 30%?”). 

- Work with Service Designers to ensure model outputs align with user workflows (e.g., explainable AI dashboards for dealers). 

- Advise Legal & Compliance on ethical AI, bias mitigation, and GDPR-compliant data usage. 

 4. Automotive-Focused Innovation 

- Design models that address industry-specific challenges: 

- Residual value prediction with subsidy integration. 

- Cross-border supply/demand matching (e.g., relocating EVs from Germany to Norway). 

- Auction timing optimisation using historical buyer behaviour. 

- Publish white papers or present findings at industry conferences to position Cox as a thought leader. 

Qualifications:

- 7+ years in Data Science, with 2+ years leading teams in B2B, automotive, fintech, or supply chain domains. 

- Expertise in production-grade ML (model deployment, A/B testing, MLOps) and tools like MLflow, Airflow, or Kubeflow. 

- Mastery of Python, SQL, and cloud platforms (AWS/Asure/GCP). 

- Proven track record solving business problems with ML (e.g., pricing, logistics, churn). 

- Strong communication skills: Ability to simplify ML concepts for non-technical stakeholders. 

Desired:

- PhD in Data Science, Computer Science, or related field. 

- Experience with time-series forecasting, graph analytics, or GenAI. 

- Familiarity with automotive data (e.g., vehicle telematics, auction dynamics). 

- Fluency in French would be helpful. 

STRICTLY NO AGENCIES PLEASE

We work with a carefully selected set of recruitment agencies and we're not looking to add to our PSL.

We do not accept unsolicited agency CV's sent to the recruitment team or directly to the hiring manager. We will not be responsible for any fees related to unsolicited CV's.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.