National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Lead Data Scientist

Xcede
Southampton
3 weeks ago
Create job alert

Lead Data Scientist

Surrey office, x1 day every two weeks.


A well-established, product-led business is looking for a Lead Data Scientist to spearhead innovation and drive measurable value through advanced machine learning, experimentation, and the development of production-grade models.


Sitting within a cross-functional data team, this is a hands-on leadership role with the autonomy to shape the modelling roadmap, contribute to R&D strategy, and influence pricing and risk decisions across multiple business lines. You’ll manage a small team of data scientists, guiding them through delivery while remaining actively involved in technical implementation and experimentation.


This is a unique opportunity for someone passionate about building machine learning systems that go beyond prototypes — models that deliver real-world commercial outcomes in a data-rich, regulated environment.


Key Responsibilities

  • Lead a high-performing team of data scientists to deliver cross-functional, impactful AI/ML initiatives
  • Design and implement predictive models and machine learning solutions for core business areas
  • Build and productionise models in collaboration with data engineers and platform teams
  • Apply advanced statistical techniques to extract insights and guide product and pricing strategies
  • Work closely with stakeholders to understand requirements, define modelling goals, and demonstrate business value
  • Evaluate vendor data sources, assess economic and technical feasibility, and lead test-and-learn initiatives
  • Contribute to the modelling roadmap, experimentation frameworks, and internal data science tooling
  • Produce clean, maintainable, version-controlled code and refactor solutions into reusable libraries and APIs
  • Coach junior team members and promote best practices across the wider data and analytics community


Requirements


  • Ideally, 6+ years of hands-on experience applying data science techniques in commercial or research-led environments, delivering clear business outcomes
  • Advanced academic background (MSc or PhD) in a technical or quantitative field such as Machine Learning, Computer Science, or Statistics
  • Strong programming ability in Python (data science ecosystem) and SQL, with proven experience handling large, complex datasets
  • Solid track record of building, validating, and deploying machine learning models into real-world systems
  • Practical experience designing experiments, selecting evaluation metrics, and applying multivariate testing frameworks
  • Leadership mindset — you’ve mentored or managed data science colleagues or helped steer technical decisions in a collaborative team
  • Comfortable with version control (Git) and familiar with engineering workflows like CI/CD and containerised environments
  • Skilled at working with both structured and unstructured data to unlock insights and power models
  • Hands-on experience with Databricks, Apache Spark, or similar tools used in large-scale data processing
  • Exposure to machine learning model deployment using APIs or lightweight serving frameworks like Flask or Keras
  • Familiarity with geospatial data would be a great bonus!


If this role interests you and you would like to learn more, please apply here or contact us via (feel free to include a CV for review).

Related Jobs

View all jobs

Lead Data Scientist

Lead Data Scientist (Equity only)

Lead Data Scientist (Equity only)

Lead Data Scientist (Equity only)

Lead Data Scientist (Equity only)

Lead Data Scientist

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.