Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Lead Data Scientist

Formula Recruitment
Manchester
5 months ago
Applications closed

Related Jobs

View all jobs

Lead Data Scientist

Lead Data Scientist - Remote

Lead Data Scientist - Remote

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist | Advanced Process Modelling | Pharma/Biotech


Salary: Up to £80,000

Technology: Python, MATLAB, MVA, SIMCA

Location: Hybrid, London (Flexible)


We’re partnering with an innovative and fast-scaling company that’s transforming how pharmaceutical and biotech organisations optimise their manufacturing processes. They combine cutting-edge data science with deep domain expertise to deliver model-driven solutions that enhance product quality, reduce batch failures, and improve operational efficiency. As demand for their expertise grows, they're expanding their global team to take on some of the industry’s most complex and high-impact challenges.


They are looking for a Lead Data Scientist who sits at the intersection of advanced analytics, strategic project execution, and pharmaceutical process knowledge. You’ll be responsible for guiding client engagements, leading multi-regional teams, and developing innovative solutions that directly impact drug manufacturing outcomes on a global scale.


Key Responsibilities


  • Lead and deliver global data science projects in pharma manufacturing.
  • Manage timelines, risks, and client communications.
  • Design ML models for process monitoring and predictive analytics.
  • Integrate ML to boost efficiency and reduce batch loss.
  • Build mechanistic, hybrid, and data-driven models for optimisation.
  • Ensure regulatory compliance and deploy models using SIMCA.
  • Mentor data scientists and support knowledge sharing.
  • Produce clear documentation and client-facing reports.


Required Experience


  • 5+ years in data science, with expertise in process monitoring and control.
  • Proven track record managing global, cross-functional projects.
  • Experience with OSI-PI, SAP, MES, or similar systems (preferred).
  • Strong background in ML for process monitoring and anomaly detection.
  • Skilled in MVA and tools like SIMCA, plus Python and/or MATLAB.
  • Able to integrate diverse data sources into analytical workflows.
  • Strong leadership and client-facing communication skills.
  • Highly organised, with a results-driven, problem-solving mindset.


This is a unique opportunity to take on a technical leadership position at the forefront of data-driven manufacturing in the life sciences sector. You’ll play a key role in delivering impactful global projects, shaping the future of advanced analytics in pharma and biotech. The role offers a flexible, remote-first work environment with strong support for professional growth and development.


** Unfortunately due to a high number of applications, not all applicants will receive feedback

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Best Free Tools & Platforms to Practise Machine Learning Skills in 2025/26

Machine learning (ML) has become one of the most in-demand career paths in technology. From predicting customer behaviour in retail to detecting fraud in banking and enabling medical breakthroughs in healthcare, ML is transforming industries across the UK and beyond. But here’s the truth: employers don’t just want candidates who have read about machine learning in textbooks. They want evidence that you can actually build, train, and deploy models. That means practising with real tools, working with real datasets, and solving real problems. The good news is that you don’t need to pay for expensive software or courses to get started. A wide range of free, open-source tools and platforms allow you to learn machine learning skills hands-on. Whether you’re a beginner or preparing for advanced roles, you can practise everything from simple linear regression to deploying deep learning models — at no cost. In this guide, we’ll explore the best free tools and platforms to practise machine learning skills in 2025, and how to use them effectively to build a portfolio that UK employers will notice.

Top 10 Skills in Machine Learning According to LinkedIn & Indeed Job Postings

Machine learning (ML) is at the forefront of innovation, powering systems in finance, healthcare, retail, logistics, and beyond in the UK. As organisations leverage ML for predictive analytics, automation, and intelligent systems, demand for skilled practitioners continues to grow. So, which skills are most in demand? Drawing on insights from LinkedIn and Indeed, this article outlines the Top 10 machine learning skills UK employers are looking for in 2025. You'll learn how to demonstrate these capabilities through your CV, interviews, and real-world projects.

The Future of Machine Learning Jobs: Careers That Don’t Exist Yet

Machine learning (ML) has become one of the most powerful forces reshaping the modern world. From voice assistants and recommendation engines to fraud detection and medical imaging, it underpins countless applications. ML is no longer confined to research labs—it powers business models, public services, and consumer technologies across the globe. In the UK, demand for machine learning professionals has risen dramatically. Organisations in finance, retail, healthcare, and defence are embedding ML into their operations. Start-ups in Cambridge, London, and Edinburgh are pioneering innovations, while government-backed initiatives aim to position the UK as a global AI leader. Salaries for ML engineers and researchers are among the highest in the tech sector. Yet despite its current importance, machine learning is only at the beginning of its journey. Advances in generative AI, quantum computing, robotics, and ethical governance will reshape the profession. Many of the most vital machine learning jobs of the next two decades don’t exist today. This article explores why new careers will emerge, the roles likely to appear, how today’s roles will evolve, why the UK is well positioned, and how professionals can prepare now.