Lead Data Engineer - (MongoDB and Kafka)

Develop
1 year ago
Applications closed

Related Jobs

View all jobs

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer / Architect – Databricks Active - SC Cleared

Lead Data Engineer (GCP)

Lead Data Engineer | TechBio Platform | GCP, BigQuery, Terraform, DBT

Lead Data Engineer (MongoDB, Kafka, Java)Salary: Competitive plus generous benefits package Location: Hybrid working with occasional travel to key sites across the UK (London, Bristol, Gloucester, Edinburgh)About the Role A leading financial services organization is undergoing a major digital transformation, placing technology at the heart of its growth strategy. They are investing in an enhanced in-house capability to reshape the future of banking. This transformation presents a unique opportunity for a forward-thinking IT professional to play a critical role in building next-generation data-driven systems.How You'll Make a Difference The Lead Data Engineer will be a central figure in designing, developing, and deploying mission-critical data applications and systems. Combining deep technical expertise with leadership skills, the role involves driving innovation, managing complex projects, and mentoring junior engineers. The successful candidate will set the technical direction for projects, ensuring that solutions align with business goals while maintaining the highest quality standards.Key ResponsibilitiesLead the design and implementation of data-driven solutions across the enterprise.Collaborate with cross-functional teams to align technology strategy with business objectives.Mentor and support junior engineers, fostering a culture of continuous learning.Ensure data systems are scalable, maintainable, and secure.Drive improvements in processes, technologies, and systems architecture. What You'll Bring Essential Skills & Experience:Bachelor's or Master's degree in Computer Science, Engineering, or equivalent experience.Expertise in agile application development using Java and microservices, with a focus on MongoDB and Kafka.Strong proficiency in data architecture, design patterns, and best practices.Experience with CI/CD pipelines and version control systems like Git.Proven ability to design scalable, real-time data applications. Technical Expertise: Must have modern, recent experience with MongoDB and Kafka in a data engineering capacityReal-Time Data ApplicationsData Management: MongoDB, Cassandra/ScyllaDBData Integration: Kafka, Kafka Streams, Java, APIs (GraphQL)Data Analytics Applications:Data Management: Teradata, Azure Data Lake, Snowflake, DatabricksData Modelling: Dimensional Modelling, Kimball DesignData Integration: IBM DataStage, SQL, Azure Data Factory, AWS GlueBatch Orchestration: TWS/OPC, JCLData Visualization: Power BIData Analytics: SAS or comparable tools What's in It for YouHybrid & Flexible Working: Supporting a healthy work/life balance.Reward & Benefits Package: A personalized benefits program.Dynamic Work Environment: A collaborative and inclusive culture.Career Growth: Opportunities for development and progression

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.