Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Lead Data Engineer - (MongoDB and Kafka)

Develop
11 months ago
Applications closed

Related Jobs

View all jobs

Lead Data engineer

Lead Data Engineer

Lead Data Engineer - FinTech Unicorn - Up to £140k

Lead Data Engineer: Hybrid, Remote, Clear Growth Path

Lead Data Engineer — AWS/Snowflake Data Platform Leader

Lead Data Engineer...

Lead Data Engineer (MongoDB, Kafka, Java)Salary: Competitive plus generous benefits package Location: Hybrid working with occasional travel to key sites across the UK (London, Bristol, Gloucester, Edinburgh)About the Role A leading financial services organization is undergoing a major digital transformation, placing technology at the heart of its growth strategy. They are investing in an enhanced in-house capability to reshape the future of banking. This transformation presents a unique opportunity for a forward-thinking IT professional to play a critical role in building next-generation data-driven systems.How You'll Make a Difference The Lead Data Engineer will be a central figure in designing, developing, and deploying mission-critical data applications and systems. Combining deep technical expertise with leadership skills, the role involves driving innovation, managing complex projects, and mentoring junior engineers. The successful candidate will set the technical direction for projects, ensuring that solutions align with business goals while maintaining the highest quality standards.Key ResponsibilitiesLead the design and implementation of data-driven solutions across the enterprise.Collaborate with cross-functional teams to align technology strategy with business objectives.Mentor and support junior engineers, fostering a culture of continuous learning.Ensure data systems are scalable, maintainable, and secure.Drive improvements in processes, technologies, and systems architecture. What You'll Bring Essential Skills & Experience:Bachelor's or Master's degree in Computer Science, Engineering, or equivalent experience.Expertise in agile application development using Java and microservices, with a focus on MongoDB and Kafka.Strong proficiency in data architecture, design patterns, and best practices.Experience with CI/CD pipelines and version control systems like Git.Proven ability to design scalable, real-time data applications. Technical Expertise: Must have modern, recent experience with MongoDB and Kafka in a data engineering capacityReal-Time Data ApplicationsData Management: MongoDB, Cassandra/ScyllaDBData Integration: Kafka, Kafka Streams, Java, APIs (GraphQL)Data Analytics Applications:Data Management: Teradata, Azure Data Lake, Snowflake, DatabricksData Modelling: Dimensional Modelling, Kimball DesignData Integration: IBM DataStage, SQL, Azure Data Factory, AWS GlueBatch Orchestration: TWS/OPC, JCLData Visualization: Power BIData Analytics: SAS or comparable tools What's in It for YouHybrid & Flexible Working: Supporting a healthy work/life balance.Reward & Benefits Package: A personalized benefits program.Dynamic Work Environment: A collaborative and inclusive culture.Career Growth: Opportunities for development and progression

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.