Lead Data Engineer

Midnite Limited
City of London
4 days ago
Create job alert

Salary: £100,000 - £120,000 - Must be based in the UK


Please note: The hiring manager is on annual leave from the 20th October to 3rd November.


Why Midnite?

Midnite is a next-generation betting platform that is built for today’s fandom. We are a collective of engineers and designers who all share a passion for building the best sportsbook & casino experience possible, allowing our fans to feel closer to the games they love through the rush of winning money.


Unlike the alternatives, Midnite doesn't feel like a website built two decades ago. Instead, it’s a cutting-edge creation, designed and constructed from the ground up with the latest technologies. Crafting an experience that's truly intuitive, immersive, and immediately understandable is no walk in the park, but we thrive on the challenge. We believe we're on the brink of creating something truly awesome.


What will you do?

We’re looking for a Lead Data Engineer to drive the next phase of our data strategy at Midnite. This is a hands‑on leadership role where you’ll set the technical direction, own the design and scalability of our data infrastructure, and ensure the team delivers high‑quality, impactful solutions.


You’ll work across the full data lifecycle from ingestion and modelling to orchestration, monitoring, and analytics enablement, while also mentoring engineers and shaping engineering best practices. As a lead, you’ll partner with our leadership team to make sure our data function not only delivers but also drives strategic decision‑making.


Our Tech Stack

Python, Docker, Dagster, dbt, Fivetran, Apache Iceberg, Snowflake, S3, Glue, ECS, and Omni. We’re constantly evolving our stack and welcome input from engineering leaders on how we can improve scalability, reliability, and efficiency.


Leadership & Collaboration

As Lead Data Engineer, you’ll be both a technical expert and a team leader. You’ll:



  • Set technical standards and drive adoption of best practices across the team.
  • Mentor and coach engineers, raising the bar on quality and delivery.
  • Collaborate closely with senior stakeholders to align data initiatives with business priorities.
  • Champion innovation, evaluating new tools, platforms, and methodologies.

Responsibilities

  • Own the technical strategy for data engineering, ensuring our stack scales with the business.
  • Design, maintain, and evolve robust data pipelines and architecture to support low latency batch use cases.
  • Oversee the implementation of data models and frameworks that support analytics, and business intelligence.
  • Drive engineering best practices across testing, monitoring, version control, and automation.Li>
  • Lead code reviews, enforce quality standards, and ensure technical debt is managed proactively.
  • Manage and mentor engineers, supporting career development and creating a culture of excellence.
  • Stay ahead of industry trends, introducing tools and methods that future‑proof the data platform.

Essential Experience

  • 7+ years in data engineering, with at least 2+ years in a lead or equivalent role.
  • Proven track record of designing and scaling data platforms in a high‑growth or start‑up environment.
  • Strong expertise in Python and SQL, with deep experience in orchestration frameworks (Dagster, Airflow, Prefect).
  • Advanced knowledge of data modelling and architecture (Kimball dimensional modelling, Data Vault etc).
  • Hands‑on experience with dbt, modern data warehouses, and AWS.
  • Demonstrated ability to mentor and develop engineers.

Desirable Experience

  • Experience with Snowflake.
  • Experience with Apache Iceberg.
  • Experience with infrastructure‑as‑code (Terraform preferred).
  • Experience embedding observability and monitoring in data systems.
  • Previous experience building and leading data teams in a scale‑up environment.

What’s in it for you:

  • Shape our future: Play a key role in our team's success, where your voice matters, and you'll have a direct impact on shaping Midnite's future.
  • Connect and unwind: Take part in our quarterly gatherings where our community comes together to bond and have fun.
  • Comprehensive health coverage: Look after your well‑being with our outstanding zero‑excess health insurance plan, which includes optical and dental coverage.
  • Income Protection: A great plan for looking after your income and providing peace of mind for you and your loved ones.
  • Simplify life: Take advantage of our nursery salary sacrifice scheme, allowing you to conveniently pay your child's nursery fees straight from your paycheck.
  • Work‑life balance: Enjoy 25 paid holidays a year, plus generous paid maternity, paternity, and adoption leave, supporting you during life's most important moments.
  • Productive home office: We provide everything you need for a comfortable and ergonomic home setup, ensuring you're as productive as possible.
  • Flexible working: We embrace flexible working, allowing you to adjust your schedule when life's unexpected moments arise.
  • Latest tech made easy: With our salary sacrifice schemes, you can upgrade to the latest gadgets, household items, and mobile tech without the upfront cost.
  • Exclusive perks: Enjoy a wide range of discounts on retailers, groceries, and subscriptions, making life a little more affordable.
  • Grow with us: Expand your skills through internal and external learning opportunities while benefiting from access to mentorship programs that support your development.
  • Transparent compensation: We provide competitive pay with clear team bandings and salary grids, ensuring that salary discussions are simple and fair.
  • Constructive feedback: We foster a transparent culture, encouraging individual feedback and review sessions to help everyone improve.

At Midnite, we’re committed to creating equal opportunities for everyone. We actively strive to build balanced teams that reflect the diversity of our communities, including ethnic minorities, people with disabilities, the LGBTQIA+ community, and all genders.


We aim to provide an inclusive and supportive interview experience for all candidates. If you require any reasonable adjustments, please let us know in advance so we can ensure you feel comfortable and set up for success.


#J-18808-Ljbffr

Related Jobs

View all jobs

Lead Data Engineer

Lead Data Engineer / Architect – Databricks Active - SC Cleared

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.