Lead Data Engineer

London
5 days ago
Applications closed

Related Jobs

View all jobs

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer (Azure)

Lead Data Engineer / Architect – Databricks Active - SC Cleared

Job Title: Lead Data Engineer
Location: London (Hybrid)
Contract: 6 Months (Potential Extension)
Start Date: ASAP

About the Client
Our client is transforming their industry by replacing cigarettes with innovative, smoke-free alternatives. They are leveraging technology, data, and AI to drive a global shift toward a smoke-free world. This is a fast-paced, high-impact environment, perfect for candidates who are strategic, independent, and excited to work at the forefront of data and AI innovation

The Role
We are looking for a skilled Data Engineer to design, build, and optimize enterprise-scale data pipelines and cloud platforms. You will translate business and AI/ML requirements into robust, scalable solutions while collaborating across multi-disciplinary teams and external vendors.

As a key member of the data architecture you will:

Build and orchestrate data pipelines across Snowflake and AWS environments.
Apply data modeling, warehousing, and architecture principles (Kimball/Inmon).
Develop pipeline programming using Python, Spark, and SQL; integrate APIs for seamless workflows.
Support Machine Learning and AI initiatives, including NLP, Computer Vision, Time Series, and LLMs.
Implement MLOps, CI/CD pipelines, data testing, and quality frameworks.
Act as an AI super-user, applying prompt engineering and creating AI artifacts.
Work independently while providing clear justification for technical decisions.Key Skills & Experience

Strong experience in data pipeline development and orchestration.
Proficient with cloud platforms (Snowflake, AWS fundamentals).
Solid understanding of data architecture, warehousing, and modeling.
Programming expertise: Python, Spark, SQL, API integration.
Knowledge of ML/AI frameworks, MLOps, and advanced analytics concepts.
Experience with CI/CD, data testing frameworks, and versioning strategies.
Ability to work effectively in multi-team, vendor-integrated environments.Why This Role

Join a global, transformative initiative shaping a smoke-free future.
Work with cutting-edge cloud, AI, and data technologies.
Opportunity to influence technical and strategic decisions across enterprise data delivery.
Dynamic, innovative environment where your work has real business impact

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.