Lead Data Engineer

Frasers Group
Clayton-le-Moors
1 year ago
Applications closed

Related Jobs

View all jobs

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Company Description

At Frasers Group we’re rethinking retail. Through digital innovation and unique customer experiences, we’re serving our consumers with the world’s best sports, premium and luxury brands globally. As a leader in the industry, we’re elevating the retail experience for our consumers providing flexible and convenient ways to pay across our collection of established brands, including Studio, Sports Direct, FLANNELS, USC, Frasers, and GAME

Frasers Group Financial Services is the next chapter of elevation for the Frasers Group.
We fear less and do more. Our people are forward thinkers who are driven to operate outside of their comfort zone to change the future of retail, embracing challenges along the way. The potential to elevate your career is massive, the experience unrivalled.

Why join us?

Our purpose – we are elevating the lives of the many with access to the world’s best brands and experiences

Frasers Group Financial Services is committed to delivering a positive colleague experience and to be able to make the most of it you need to immerse yourself into delivering on our principles:

Think without limits - Think fast, think fearlessly, and take the team with youOwn it and back yourself - Own the basics, own your role and own the resultsBe relevant - Relevant to our people, our partners and the planet

Are you ready to join the Fearless?

Job Description

The role of the Lead Data Engineer is to lead the design, development, and maintenance of the organisation's data infrastructure. The role involves overseeing the efficient, reliable, and secure collection, storage, and processing of data, which is critical for enabling data-driven decision-making across FGFS.

The Team Lead will help manage and mentor a team of data engineers, working collaboratively with cross-functional teams to implement data solutions, optimise data pipelines, and drive the overall data strategy, ensuring data integrity, security, and accessibility across FGFS. The Team Lead will also play a key role in strategic planning, process improvement, and aligning data initiatives with business goals.

Lead the design, development, and maintenance of scalable and efficient data pipelines for extracting, transforming, and loading data from multiple sources. Oversee the team's efforts in building and optimising data pipelines, ensuring alignment with organisational goals and performance standards. Manage and mentor a team of data engineers, providing guidance, support, and professional development opportunities. Oversee the diagnosis and resolution of complex data-related issues within the platform, ensuring prompt and effective support and maintenance of data systems. Implement best practices for monitoring and alerting to proactively address potential issues. Act as a primary liaison between the data engineering team, spoke analysts, and other key stakeholders to align data solutions with business needs. Ensure the team adheres to data governance policies, regulatory requirements, and data security best practices. Oversee the creation and maintenance of comprehensive documentation of data engineering processes. Regularly report on system performance, data quality, and pipeline health to senior management and other stakeholders. Drive the continuous improvement of data engineering practices by staying current with industry trends, emerging technologies, and best practices. Lead initiatives to implement innovative solutions and improvements, ensuring the data engineering team's approach remains efficient, scalable, and effective.

Qualifications

Required

Good knowledge of enterprise data warehousing, data integration and Business Intelligence (BI) reporting. Well versed with cloud-based data warehouse solutions including Snowflake. Knowledge of DBT and different ingest tools such as Stitch, Fivetran and Snowpipe. Significant SQL experience. Experience with leading and mentoring junior members of a team. Comfortable with working in a high pressure environment and working to tight deadlines Strong understanding of Data Governance best practice

Desirable

Working knowledge of Python. Experience with modelling data for Microsoft PowerBI. Knowledge of best practice for data modelling and architecture. Prior Financial Services experience

Non-technical required:

Excellent critical thinking and solution creation skills Ability to deliver in a fast-paced and dynamic environment.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.