Lead Data Engineer

Frasers Group
Clayton-le-Moors
1 year ago
Applications closed

Related Jobs

View all jobs

Lead Data Engineer

Lead Data Engineer / Architect – Databricks Active - SC Cleared

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Company Description

At Frasers Group we’re rethinking retail. Through digital innovation and unique customer experiences, we’re serving our consumers with the world’s best sports, premium and luxury brands globally. As a leader in the industry, we’re elevating the retail experience for our consumers providing flexible and convenient ways to pay across our collection of established brands, including Studio, Sports Direct, FLANNELS, USC, Frasers, and GAME

Frasers Group Financial Services is the next chapter of elevation for the Frasers Group.
We fear less and do more. Our people are forward thinkers who are driven to operate outside of their comfort zone to change the future of retail, embracing challenges along the way. The potential to elevate your career is massive, the experience unrivalled.

Why join us?

Our purpose – we are elevating the lives of the many with access to the world’s best brands and experiences

Frasers Group Financial Services is committed to delivering a positive colleague experience and to be able to make the most of it you need to immerse yourself into delivering on our principles:

Think without limits - Think fast, think fearlessly, and take the team with youOwn it and back yourself - Own the basics, own your role and own the resultsBe relevant - Relevant to our people, our partners and the planet

Are you ready to join the Fearless?

Job Description

The role of the Lead Data Engineer is to lead the design, development, and maintenance of the organisation's data infrastructure. The role involves overseeing the efficient, reliable, and secure collection, storage, and processing of data, which is critical for enabling data-driven decision-making across FGFS.

The Team Lead will help manage and mentor a team of data engineers, working collaboratively with cross-functional teams to implement data solutions, optimise data pipelines, and drive the overall data strategy, ensuring data integrity, security, and accessibility across FGFS. The Team Lead will also play a key role in strategic planning, process improvement, and aligning data initiatives with business goals.

Lead the design, development, and maintenance of scalable and efficient data pipelines for extracting, transforming, and loading data from multiple sources. Oversee the team's efforts in building and optimising data pipelines, ensuring alignment with organisational goals and performance standards. Manage and mentor a team of data engineers, providing guidance, support, and professional development opportunities. Oversee the diagnosis and resolution of complex data-related issues within the platform, ensuring prompt and effective support and maintenance of data systems. Implement best practices for monitoring and alerting to proactively address potential issues. Act as a primary liaison between the data engineering team, spoke analysts, and other key stakeholders to align data solutions with business needs. Ensure the team adheres to data governance policies, regulatory requirements, and data security best practices. Oversee the creation and maintenance of comprehensive documentation of data engineering processes. Regularly report on system performance, data quality, and pipeline health to senior management and other stakeholders. Drive the continuous improvement of data engineering practices by staying current with industry trends, emerging technologies, and best practices. Lead initiatives to implement innovative solutions and improvements, ensuring the data engineering team's approach remains efficient, scalable, and effective.

Qualifications

Required

Good knowledge of enterprise data warehousing, data integration and Business Intelligence (BI) reporting. Well versed with cloud-based data warehouse solutions including Snowflake. Knowledge of DBT and different ingest tools such as Stitch, Fivetran and Snowpipe. Significant SQL experience. Experience with leading and mentoring junior members of a team. Comfortable with working in a high pressure environment and working to tight deadlines Strong understanding of Data Governance best practice

Desirable

Working knowledge of Python. Experience with modelling data for Microsoft PowerBI. Knowledge of best practice for data modelling and architecture. Prior Financial Services experience

Non-technical required:

Excellent critical thinking and solution creation skills Ability to deliver in a fast-paced and dynamic environment.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.