National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Lead Data Engineer

Extreme Reach
London
6 months ago
Applications closed

Related Jobs

View all jobs

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

XR is a global technology platform powering the creative economy. Its unified platform moves creative and productions forward, simplifying the fragmentation and delivering global insights that drive increased business value. XR operates in 130 countries and 45 languages, serving the top global advertisers and enabling $150 billion in video ad spend around the world. More than half a billion creative brand assets are managed in XR’s enterprise platform. 

Above all, we are a supportive and collaborative culture dedicated to DEI. We are caring, dedicated, positive, genuine, trustworthy, experienced, passionate and fun people with loyalty to our customers and our fellow teammates. It is our belief that the better we work together to help our clients achieve their goals, the more successful XR will be.  

The Opportunity 

We are looking for a motivated and results driven Lead Data Engineer to join our Development Team; responsible for designing, and managing the infrastructure and data systems that power analytics and business intelligence within an organization including, but not limited to, Lake House architecture and solution development, performance optimization, data feeds development, and opportunities to contribute to Machine Learning & AI initiatives. This role blends advanced technical skills with leadership capabilities to drive the development and integration solutions at scale. You will contribute to bringing the product up to modern cloud and tool stack. You will play a crucial role in collaborating and managing cross-functional relationships to ensure seamless integration and alignment of data initiatives and translate business requirements into technical solutions. 

Job Responsibilities: 

  • Lead the design and implementation of data lake architecture based on variety of technologies such as Databricks, Exasol, S3. 
  • Take accountability and ownership for deploying technical frameworks, processes and best practices which allow engineers of all levels to build extensible, performant and maintainable solutions. 
  • Manage cross-team and stakeholder relationships to drive collaboration and meet shared goals. 
  • Design and implement scalable, reliable, and high-performance data architectures to support large-scale data processing and machine learning workflows. 
  • Architect and develop end-to-end data pipelines, including data extraction, transformation, and loading (ETL) processes. 
  • Optimize data pipelines and storage solutions for performance, scalability, and cost efficiency.  
  • Design the process for monitoring and troubleshooting of data infrastructure issues, identifying performance bottlenecks and ensuring high uptime. 
  • Utilize containerized, serverless architecture patterns in system design; 
  • Promote and drive automated testing, DevOps & CI/CD methodologies to work successfully within an agile environment. 
  • Ensure that data governance, privacy, and security policies are adhered to, in compliance with industry standards and regulations (e.g., GDPR, etc). 
  • Lead, mentor, and support a team of data engineers, providing guidance and support for their technical development. 
  • Collaborate with global cross-functional teams including DevOps, security teams and business stakeholders. 
  • Collaborate with data scientists and machine learning engineers to ensure seamless integration with AI/ML projects. 
  • Stay current with emerging data technologies and trends, evaluating and implementing new tools, frameworks, and platforms to improve the data engineering workflows. 
  • Foster a culture of continuous improvement, encouraging innovation and the adoption of modern tools and best practices in data engineering. 

Requirements

  • MS/BS in Computer Science or related background is essential; 
  • Significant hands-on experience (7+ years) in data engineering, with 2+ years in lead or senior technical role; 
  • Proficiency with Python and SQL is essential; 
  • Proficiency with Spark is essential;  
  • Proven track record of successfully managing large-scale data architectures; 
  • Strong expertise in designing and managing data lakes, data warehouses, data modelling, ETL processes, and database design; 
  • Strong leadership and mentoring skills to guide and develop junior team members; 
  • Experience with shell scripting, system diagnostic and automation tooling; 
  • Experience with various database technologies (MS SQL, Postgres, MySQL) including database performance optimization (e.g., indexing, query optimization); 
  • Experience with No-SQL technologies; 
  • Experience with cloud services (AWS); 
  • Proven experience in implementing DevOps practices; 
  • Experience implementing data quality and code quality practices; 
  • Experience with various programming languages (Java, Scala, Javascript, etc) is beneficial; 
  • Proficiency with infrastructure as a code, code automation, CI/CD is beneficial; 
  • Experience in data governance and compliance is beneficial; 
  • Experience with Docker and containers is desirable; 
  • Experience in visualization tools such PowerBI is desirable; 
  • Excellent interpersonal skills with the ability to collaborate and communicate effectively across diverse teams; 
  • Strong problem solving, organization and analytical skills; 
  • Ability to manage competing priorities, handle complexity, and drive projects to completion; 
  • Keen eye for detail. 
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.