Lead Data Engineer

Holborn and Covent Garden
1 month ago
Applications closed

Related Jobs

View all jobs

Lead Data Engineer (AD -Consulting) - Exclusive

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer - Hybrid working

Lead Data Engineer ( Databricks )
London - Hybrid - Remote
Permanent
£100,000 - £130,000 plus up to 20% bonus based on performance and commercial contribution

About the Role

We’re looking for a Lead Data Engineer to spearhead some of our clients most strategic Databricks engagements.

This is a senior client-facing leadership role, blending hands-on technical delivery with architectural design and pre-sales influence.

You'll be leading high-performing squads, guiding complex transformations, and working directly with senior stakeholders to bridge business needs and engineering excellence — particularly in industries like manufacturing, utilities, and aviation.

This is a key hire to support our clients expanding Databricks practice, to build capacity for future growth.

What You’ll Be Doing

  • Act as the technical lead on client engagements, owning design and delivery of data solutions in Databricks.

  • Architect robust, scalable data platforms using the medallion architecture.

  • Translate business requirements into scalable workflows, advising on data governance, quality, and security.

  • Design and implement complex data pipelines using tools like Delta Live Tables (DLT) and Unity Catalog.

  • Guide teams in implementing best practices across engineering, DevOps, and model deployment.

  • Support pre-sales activity, including shaping proposals, estimates, and technical roadmaps.

  • Provide technical leadership, mentorship, and oversight to squads of Senior and Associate Engineers.

  • Collaborate closely with Platform Engineers and Platform Architects to align infrastructure with data needs.

  • Contribute to growing the Databricks capability – from delivery frameworks to internal tooling and capability development.

  • Lead a team of data engineers, fostering a collaborative and growth-oriented environment.

  • Evaluate new data engineering technologies and strategies, assessing their relevance and fit for the organisation’s strategic goals.

  • Work closely with the commercial team to scope projects and develop proposals that align technical capabilities with client requirements.

    Essential Skills & Experience

  • 8+ years in data engineering, with at least 2+ in a technical leadership role

  • Proven experience designing and leading Databricks-based data platforms

  • Deep understanding of the medallion architecture, data lakehouse design, and transformation workflows

  • Hands-on expertise with DLT, Unity Catalog, and model deployment frameworks

  • Strong communication and consulting skills – able to lead client conversations and manage stakeholders

  • Experience in agile delivery environments and cross-functional teams

  • Commercial awareness – comfortable contributing to pre-sales, growing accounts, and engaging with commercial targets

    Desirable Skills

  • Experience in physical asset-heavy industries (e.g. utilities, manufacturing, aviation)

  • Familiarity with platform and DevOps collaboration, especially on AWS or Azure

  • Certifications in Databricks or cloud platforms (AWS/Azure)

  • Background in consulting or client delivery environments

    Why Join?

  • Join a consultancy that’s doubling down on Databricks with enterprise-grade delivery

  • Be the go-to technical leader on projects with real-world business impact

  • Shape the future of our Databricks workforce strategy and delivery model

  • Career progression into Delivery Lead, Practice Lead, or Pre-Sales Specialist

  • Competitive compensation and strong bonus structure, aligned with delivery and commercial impact

    To find out more about this high profile Lead Data Engineering position, click apply

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!