Lead Data Engineer

Charlottesville
9 months ago
Applications closed

Related Jobs

View all jobs

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer (Azure)

Lead Data Engineer / Architect – Databricks Active - SC Cleared

Lead Data Engineer (GCP)

Lead Data Engineer

Lead Data Engineer
Charlottesville, Virginia - remote working US based (East Coast preferred)
$150,000 to $170,000 depending on experience + Medical, Dental, Maternity Leave, Vision, Paternity, 401k

Excellent opportunity for a Lead Data Engineer with expertise in Microsoft Azure to join an established, successful, growing company in a highly varied and interesting role where they put a large emphasis on the welfare of their employees.

This is a financially strong and stable software company that is going from strength to strength as they grow and upscale, they can offer unique opportunities for their staff to develop and progress. They want to give people more than a job, they want to offer a purpose and a career where you can develop, upskill, train and progress. Through growth, they are looking to add Lead Data Engineer to be a hands-on technical expert and leader to their small but growing team.

In this role you will play a pivotal role in advancing the analytics capabilities within the company. This is a remote working role; however, you must be living in the USA and not require a visa to be employed. East Coast time zone is preferred.

The ideal candidate will be an experienced Data Engineer with strong Microsoft Azure expertise and leadership experience (either technical leadership, or hands on management).

This is a fantastic opportunity to join a financially strong and stable, growing organization in an exciting role where you will be treated well and given opportunities to progress and develop.

The role:
*Data platform leadership
*Data transformation design
*Data pipeline development
*Data storage solutions
*Performance tuning
*Mentoring and being a technical leader
*Documentation
*Remote working, US based

The person:
*Experienced Lead Data Engineer with strong Microsoft Azure expertise
*Data Modeling and Warehousing experience
*Experience of Pipeline Construction and Orchestration
*Deep knowledge of ETL and ELT, particularly using Azure Data Factory
*Leadership experience, either technical leadership or direct management
*Experience with the following is beneficial - Streaming data processing, Data processing patterns, SQL & Data manipulation, Analytical problem solving, Programming skills, CI/CD implementation, Databricks

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.