Lead Data Architect

Inspire People
London
2 months ago
Applications closed

Related Jobs

View all jobs

Data Engineering Lead / Data Architect

Lead Data Developer

Lead Data Engineer

Lead data Engineer - Financial Markets - Day rate

Senior Data Consultant

Big Data Engineer

Become an integral part of the financial backbone of the nation! Inspire People are working with the Bank of England to seek an experienced Data Architect with expertise in enterprise data architecture, MDM/RDM and data governance to lead a team of 2 to 3 Data Architects and play a key role in the development and enhancement of the architecture strategy and roadmaps for data and analytics for the Bank. Salary of £78,310 - £90,360 plus 8% cash benefits allowance, 10-25% annual bonus, a non-contributory pension and further benefits. Hybrid working in London (2 days a week) and a culture that values work-life balance and professional development.


This is a great opportunity to engage with cutting-edge technology and innovative projects at the heart of the UK's financial system, to collaborate with industry experts and thought leaders and contribute to the shaping of national financial policies and practices through effective data analytics.


Key Responsibilities:

  1. Lead a team of 2-3 Data Architects
  2. Lead on strategic programmes, aligning data solutions with business imperatives
  3. Translate strategic goals into technology and data strategies
  4. Craft roadmaps for data capabilities, focusing on rationalisation and simplification
  5. Develop data architecture artefacts, models, and migration strategies
  6. Establish and govern data principles, policies, and standards
  7. Guide projects in implementing data and analytics solutions
  8. Advocate for architectural solutions and strategies
  9. Innovate and shape technology-driven proposals


Role Requirements:

  1. Proven experience in enterprise data architecture
  2. Experience in contributing to data strategy
  3. Expertise in data services, management solutions, and architecture patterns
  4. Proficiency in MDM/RDM and data governance
  5. Extensive experience with conceptual and logical data models
  6. Demonstrable stakeholder management abilities


Desirable Criteria:

  1. Data Point modelling and integration expertise.
  2. Understanding of Financial Services and/or regulatory environments.


In addition to the base salary of £78,310 - £90,360 you can expect a planned, transparent progression with learning and development tailored to your role, and a culture encouraging inclusion and diversity, plus the following benefits:


  • A non-contributory, career average pension giving you a guaranteed retirement benefit of 1/95th of your annual salary for every year worked. There is the option to increase your pension (to 1/50th) or decrease (to 1/120th) in exchange for salary through our flexible benefits programme each year.
  • An annual discretionary performance award based on a current award pool (10%-25%)
  • A 8% benefits allowance with the option to take as salary or purchase a wide range of flexible benefits.
  • 25 days annual leave with option to buy up to 13 additional days through flexible benefits.
  • Private medical insurance and income protection.
  • Dental cover
  • Interest-free season ticket loan


This role is not just a career move; it's a chance to leave a lasting imprint on the financial landscape of the UK. If you are ready to take on this challenge and possess the required skills and experience, contact Zymante Gintalaite (Zee) at Inspire People.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.