Lead Computational Biologist & Deep Learning Engineer

Skills Alliance
Manchester
1 week ago
Create job alert

Develop novel cell embeddings that integrate multi-omics foundation models— transcriptomics, proteomics, epigenomics, and metabolomics—to capture comprehensive cellular signatures. Your work will enable precise predictions of drug effects, driving innovation in drug discovery.


Key Responsibilities:

Model Development:Design deep learning models integrating diverse omics data to create robust cell embeddings for digital twin technology.

Multi-Omics Integration:Develop and refine foundation models across omics platforms into a unified cell representation.

Collaboration:Work with experts in bioinformatics, drug discovery, and AI to validate models and integrate multi-modal data.

Client & Partner Engagement:Support product and service teams in translating AI models into real-world drug discovery applications.

Research Leadership:Stay at the forefront of AI and omics advancements, contributing to scientific publications and innovation.


Preferred Qualifications:

1.PhD/Postdoc in Computer Science (or related fields): Publications in top ML conferences (e.g., NeurIPS, ICLR, ICML, CVPR).

2.Strong ML/Applied Math Background:Expertise in advanced ML techniques.

3.Deep Learning Experience:Building and scaling AI models for omics or high dimensional biological data.

4.Multi-Omics Integration: Experience developing foundation models across omics datasets.

5.Collaborative Mindset:Track record of success in interdisciplinary teams and cross-functional projects.

Related Jobs

View all jobs

Lead Computational Biologist & Deep Learning Engineer

Principal Computer Vision Specialist

Computer Science Teacher

Experimental Physicist

Deep Learning AI Engineer / Bioinformatics - Expression of Interest

Principal Data Scientist

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Best UK Universities for Machine Learning Degrees (2025 Guide)

Explore ten UK universities that deliver world-class machine-learning degrees in 2025. Compare entry requirements, course content, research strength and industry links to find the programme that fits your goals. Machine learning (ML) has shifted from academic curiosity to the engine powering everything from personalised medicine to autonomous vehicles. UK universities have long been pioneers in the field, and their programmes now blend rigorous theory with hands-on practice on industrial-scale datasets. Below, we highlight ten institutions whose undergraduate or postgraduate pathways focus squarely on machine learning. League tables move each year, but these universities consistently excel in teaching, research and collaboration with industry.

How to Write a Winning Cover Letter for Machine Learning Jobs: Proven 4-Paragraph Structure

Learn how to craft the perfect cover letter for machine learning jobs with this proven 4-paragraph structure. Ideal for entry-level candidates, career switchers, and professionals looking to advance in the machine learning sector. When applying for a machine learning job, your cover letter is a vital part of your application. Machine learning is an exciting and rapidly evolving field, and your cover letter offers the chance to demonstrate your technical expertise, passion for AI, and your ability to apply machine learning techniques to solve real-world problems. Writing a cover letter for machine learning roles may feel intimidating, but by following a clear structure, you can showcase your strengths effectively. Whether you're just entering the field, transitioning from another role, or looking to advance your career in machine learning, this article will guide you through a proven four-paragraph structure. We’ll provide practical tips and sample lines to help you create a compelling cover letter that catches the attention of hiring managers in the machine learning job market.

Veterans in Machine Learning: A Military‑to‑Civilian Pathway into AI Careers

Introduction Artificial intelligence is no longer relegated to sci‑fi films—it underpins battlefield decision‑support, fraud detection, and even supermarket logistics. The UK Government’s 2025 AI Sector Deal forecasts an additional £200 billion in GDP by 2030, with machine‑learning (ML) engineers cited as the nation’s second most in‑demand tech role (Tech Nation 2024). The Ministry of Defence’s Defence AI Strategy echoes that urgency, earmarking £1.6 billion for FY 2025–28 to embed ML into planning, logistics, and autonomous systems. If you have ever tuned a radar filter, plotted artillery trajectories, or sifted sensor data for actionable intel, you have already worked with statistical modelling—the backbone of machine learning. This guide shows UK veterans how to reframe military experience for ML roles, leverage MoD transition funding, and land high‑impact positions building the models shaping tomorrow’s defence and commercial landscapes. Quick Win: Bookmark our live board for Machine‑Learning Engineer roles to see who’s hiring today.