Lead Architect

Mastek
London
1 month ago
Applications closed

Related Jobs

View all jobs

Lead Architect

[Urgent] Lead Enterprise Architect

Principal Data Architect

Data & AI Solution Architect

Data & AI Solution Architect

Data & AI Solution Architect

Job Title: Lead Architect

Location: London, UK (3 days a week in office)

SC Cleared/Eligibility: Required

Job Type: Full-Time

Experience: 11+ Years (Relevant exp 10+ years)

Job Overview:

We are seeking a highly skilled and experienced Lead Architect to play a pivotal role in the design, development, and maintenance of our cutting-edge Azure Databricks data platform for handling economic data. This role will be instrumental in establishing a robust and scalable data and analytics platform that supports critical business functions, including Monetary Analysis, Forecasting, and Modelling.

The successful candidate will possess a deep understanding of data management and engineering principles, cloud computing technologies (specifically Azure and Databricks), and a strong foundation in economic data analysis. You will be responsible for leading the technical vision and roadmap for the platform, ensuring its openness, reusability, and compatibility across various modelling runtimes such as Python, R, and MATLAB, all seamlessly supported by the Databricks environment.


Responsibilities:

  • Platform Architecture & Design:
  • Define and document the overall architecture of the Azure and Databricks platform, encompassing data ingestion, transformation, storage, processing, and consumption.
  • Design and implement robust, configurable and scalable data pipelines for ingesting, cleaning, transforming, and loading economic data from diverse sources (e.g., APIs, databases, financial data providers).
  • Develop and maintain specifications and documentation for data transformations, ensuring consistency and ease of use across different modelling runtimes.
  • Integrate various data sources and tools into the Databricks platform.
  • Modelling Runtime Support:
  • Ensure seamless integration and support for Python, R, and MATLAB modelling runtimes within the Databricks environment.
  • Develop and maintain libraries, frameworks, and tools to facilitate model development, deployment, and monitoring across different runtimes.
  • Optimise data processing and model execution performance within the Databricks environment.
  • Data Governance & Quality:
  • Establish and enforce data quality standards and best practices throughout the data lifecycle.
  • Implement data lineage tracking and provenance to ensure data traceability and auditability.
  • Develop and maintain data security and access control mechanisms to protect sensitive data.
  • Team Leadership & Collaboration:
  • Mentor and guide junior data engineers and analysts on best practices in data engineering and cloud computing.
  • Collaborate closely with data scientists, economists, and business stakeholders.
  • Stay abreast of the latest advancements in cloud computing, data engineering, and economic data analysis.
  • Innovation & Continuous Improvement:
  • Identify opportunities to improve platform performance, scalability, and efficiency.
  • Research and evaluate emerging technologies and tools.
  • Drive innovation in the use of data and technology to support business objectives.


Qualifications/Skills:

  • 10+ years of proven experience as a Lead Architect or a similar senior technical role in a data-driven environment, with at least 5+ years specifically focused on Azure cloud solutions.
  • Deep understanding of data engineering principles, including data warehousing, data modelling, data integration, and data quality.
  • Extensive experience with Azure Databricks, including data pipelines, Delta Lake, and other relevant services (minimum 3 years hands-on experience).
  • Strong proficiency in Python and experience with other programming languages (e.g., R, Scala, .NET).
  • Experience with API development and integration, including RESTful APIs and API documentation standards.
  • Familiarity with economic data analysis concepts and methodologies.
  • Experience with Agile development methodologies and DevOps practices.
  • Excellent communication, interpersonal, and presentation skills.
  • Strong analytical and problem-solving skills.
  • Ability to work independently and as part of a team.
  • Active Azure Certifications: At least one of the following is required:
  • Azure Solutions Architect Expert
  • Azure Data Engineer Associate

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.