Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Lead AI/ML Data Engineer

Mastercard
London
2 weeks ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer

Data Scientist – Grid Innovation Model Development

Data Scientist - Advanced Analytics

Machine Learning and AI Engineering Lead

Machine Learning and AI Engineering Lead

Engineering Lead - Data Engineering

Overview

Lead AI/ML Data Engineer role at Mastercard. You will be at the forefront of designing, developing, and deploying cutting-edge machine learning features that drive core business value for Mastercard. You will leverage your deep technical expertise to build sophisticated data pipelines and engineer impactful features, directly influencing our products and strategies.


Responsibilities

  • Design, develop, and implement advanced features from raw data for various machine learning models, ensuring their relevance, robustness, and scalability
  • Build and optimize efficient and reliable data pipelines to support the ingestion, transformation, and delivery of data for AI/ML applications
  • Provide technical guidance and mentorship to other junior engineers
  • Work closely with AI engineers, product managers, and other engineering teams to understand requirements, translate business problems into technical solutions, and integrate AI/ML features into production systems
  • Support the deployment, monitoring, and maintenance of AI/ML features in production environments
  • Implement robust testing and validation processes to ensure the quality, accuracy, and reliability of engineered features and AI/ML data pipelines

Qualifications

  • Education: Bachelor\'s degree in Computer Science, Engineering, Data Science, or a related quantitative field
  • Experience: Minimum of 8+ years of experience in AI/ML feature engineering, data engineering, or a related field, with a strong focus on building and deploying AI/ML feature pipelines in production
  • Technical Skills: Proficiency in Python, Scala, or Java
  • Extensive experience with data manipulation and analysis libraries (Pandas, NumPy, Spark)
  • Hands-on experience with cloud platforms
  • Strong background in SQL and NoSQL databases
  • Experience with big data technologies
  • Familiarity with MLOps tools (Docker, Kubernetes, CI/CD for ML)
  • Analytical and problem-solving skills; ability to translate business challenges into technical solutions
  • Excellent communication and presentation skills; ability to articulate technical concepts to technical and non-technical stakeholders
  • Proven ability to work in cross-functional teams and drive projects to completion
  • Passion for innovation and track record of adopting new technologies and methodologies in AI/ML

Corporate Security Responsibility

  • All activities involving access to Mastercard assets, information, and networks comes with an inherent risk to the organization and, therefore, it is expected that every person working for, or on behalf of, Mastercard is responsible for information security and must:
  • Abide by Mastercard’s security policies and practices;
  • Ensure the confidentiality and integrity of the information being accessed;
  • Report any suspected information security violation or breach;
  • Complete all periodic mandatory security trainings in accordance with Mastercard’s guidelines.

Seniority level

Mid-Senior level


Employment type

Full-time


Job function

Information Technology


Industries

Financial Services, IT Services and IT Consulting, and Technology, Information and Internet


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.