Kuiper Consumer Senior Data Scientist, Project Kuiper

Amazon Kuiper Services Europe SARL, UK Branch
London
2 months ago
Applications closed

Are you passionate about bringing connectivity to underserved customers? Do you want to work in a dynamic team building, launching and operating a satellite service for consumers from the ground up?

Project Kuiper is an initiative to launch a constellation of Low Earth Orbit satellites that will provide low-latency, high-speed broadband connectivity to unserved and underserved communities around the world. Project Kuiper is looking for a talented individual to deliver Europe Business Analytics. This role is responsible for developing and optimizing metrics to track business growth, subscriber acquisition, and demand planning; as well as field operations volume, customer contacts, and inventory trends for operational planning in the Europe. The ideal candidate is a self-starter who is comfortable upholding high standards across a wide range of domains, can manage responsibility for large scale business impact and can communicate effectively with executive audiences. They are comfortable working with data science and engineering teams to use data and infrastructure environments as well as with business audiences to quantify business impact and establish roadmaps.

This position may require access to information, technology, or hardware that is subject to export control laws and regulations, including the Export Administration Regulations (EAR) and the International Traffic in Arms Regulations (ITAR). Employment in this position is contingent upon obtaining any required export licenses or other approvals from the United States government. As such, the successful candidate must be eligible to obtain any necessary export licenses or approvals based on their nationality, citizenship, and any other factors considered by the applicable export control regulations.

Key job responsibilities
•Create a scalable customer insight mechanism (e.g. conjoint)
•Define metrics to identify drivers of subscriber acquisition, retention, and overall business health
•Develop recurring competitive insights and pricing trend analysis
•Collaborate with Regional Leads to identify gaps and trends to drive actionable insights across Europe
•Deliver comprehensive, written strategy documents considering different types of data and inputs across a broad range of stakeholders
•Enable decision-making by retrieving and aggregating data from multiple sources to present it in a digestible and actionable format
•Architect standardized data models in the data warehouse for analysis and long-term reporting
•Work with product teams to identify gaps and trends
•Analyze large data sets using a variety of database query and visualization tools

BASIC QUALIFICATIONS

- Experience in analyzing and interpreting data with Redshift, Oracle, NoSQL etc. experience
- Fluency in statistical concepts and advanced statistical techniques - distributions, confidence intervals, time series analysis, regression models, clustering.
- Experience with statistical analysis tools (such as R), root cause analysis, process design and control.
- Experience with data visualization using Tableau, Quicksight, or similar tools
- Experience with data modeling, warehousing and building ETL pipelines
- Experience using SQL to pull data from a database or data warehouse and scripting experience (Python) to process data for modeling

PREFERRED QUALIFICATIONS

- Experience in technology, media, or telecommunications; satellite internet; or subscription services
- Experience with AWS solutions such as EC2, DynamoDB, S3, and Redshift
- Experience in data mining, ETL, etc. and using databases in a business environment with large-scale, complex datasets

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.