Junior Data Scientist

Tower of London
1 year ago
Applications closed

Related Jobs

View all jobs

Junior Data Scientist

Junior Data Scientist

Junior Data Scientist

Junior Data Scientist

Junior Data Scientist

Junior Data Scientist

Junior Data Scientist

Location: London

Job Type: Full-time

Salary: Competitive

A leading technology organisation is seeking a motivated Junior Data Scientist to join their dynamic team. This entry-level position is an excellent opportunity for individuals looking to develop their skills and gain hands-on experience in data science while contributing to projects that drive business impact across various industries, including healthcare, retail, logistics, finance, and digital transformation.

This technology company specialises in providing data-driven solutions and software development services across a range of sectors. Their offerings include the creation of websites, mobile applications, and SaaS products designed to fulfil specific business objectives, such as enhancing customer engagement, optimising operational efficiency, and driving sales growth.

Key Responsibilities:

Support Data Science Projects: Assist in the end-to-end lifecycle of data science projects, including data collection, preprocessing, and analysis, while learning to apply machine learning techniques.
Model Development: Collaborate with senior team members to design and implement machine learning models that address business challenges, gaining exposure to advanced algorithms and methodologies.
Data Analysis: Conduct exploratory data analysis (EDA) to identify trends, patterns, and insights from data, contributing to the strategic initiatives of the company.
Collaboration: Work closely with cross-functional teams, including data engineers and product managers, to ensure alignment on project goals and deliverables.
Documentation and Reporting: Help document processes and findings, creating clear reports and visualisations that communicate results to technical and non-technical stakeholders.
Continuous Learning: Stay informed about industry trends and new technologies in data science and machine learning, actively seeking opportunities to expand your skill set. 

Key Requirements:

Education: A degree in a relevant field such as Computer Science, Statistics, Mathematics, or Data Science is preferred.
Experience: 0-2 years of relevant hands-on experience in data science or related fields, including internships or co-op placements that involved practical application of data analysis and machine learning techniques.
Technical Skills: Proficiency in programming languages such as Python or R. Familiarity with machine learning libraries (e.g., scikit-learn) and data manipulation tools (e.g., Pandas) is a plus.
Data Management: Understanding of SQL and experience with data analysis and visualisation tools (e.g., Tableau, Matplotlib).
Analytical Skills: Strong problem-solving abilities and a passion for data analysis and insights.
Soft Skills: Effective communication skills, a willingness to learn, and the ability to work collaboratively within a team.If you're ready to kickstart your career in data science and you meet the qualifications, please send your CV to us ASAP!

If you are interested please apply ASAP. The People Network is an employment agency and will respond to all applicants within three - five working days. If you do not hear within these timescales please feel free to get in touch

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.