Java Lead Software Engineer

JP Morgan Chase Bank, National Association
Glasgow
1 year ago
Applications closed

Related Jobs

View all jobs

Data Scientist - Featurespace

Head of Data Engineering (Manchester/Hybrid, UK)

Data Engineer Manager

Data Engineer Manager

Senior Data Engineer x1/ Data Engineer x1 (Financial Services)

Head of Data Engineering (Manchester/Hybrid, UK)

We have an exciting and rewarding opportunity for you to take your software engineering career to the next level. As a Java full stack developer team Lead at JPMorgan Chase within the Engineer's Platform and Integrated Experience Observability Team, you serve as a lead member of an agile team to design and deliver trusted market-leading technology products in a secure, stable, and scalable way. You are responsible for carrying out critical technology solutions across multiple technical areas within various business functions in support of the firm's business objectives. Job responsibilities Executes software solutions, design, development, and technical troubleshooting with ability to think beyond routine or conventional approaches to build solutions or break down technical problems Creates secure and high-quality production code and maintains algorithms that run synchronously with appropriate systems Produces architecture and design artifacts for complex applications while being accountable for ensuring design constraints are met by software code development Gathers, analyzes, synthesizes, and develops visualizations and reporting from large, diverse data sets in service of continuous improvement of software applications and systems Proactively identifies hidden problems and patterns in data and uses these insights to drive improvements to coding hygiene and system architecture Contributes to software engineering communities of practice and events that explore new and emerging technologies Adds to team culture of diversity, equity, inclusion, and respect Demonstrates client/customer focus Required qualifications, capabilities, and skills Formal training or certification on software engineering concepts and proficient applied experience Hands-on practical experience in system design, application development, testing, and operational stability Proficient in coding in Java Experience in developing RESTful web applications Experience in developing, debugging, and maintaining code in a large corporate environment with one or more modern programming languages and database querying languages Overall knowledge of the Software Development Life Cycle Solid understanding of agile methodologies such as CI/CD, Application Resiliency, and Security Demonstrated knowledge of software applications and technical processes within a technical discipline (e.g., cloud, artificial intelligence, machine learning, mobile, etc.) Demonstrates critical thinking and problem solving Preferred qualifications, capabilities, and skills Familiarity with Kafka message streaming Familiarity with modern observability platforms such as Prometheus, Grafana, ElasticSearch, Datadog, Dynatrace, Splunk etc. Exposure to modern front-end technologies Exposure to cloud technologies About Us J.P. Morgan is a global leader in financial services, providing strategic advice and products to the world's most prominent corporations, governments, wealthy individuals and institutional investors. Our first-class business in a first-class way approach to serving clients drives everything we do. We strive to build trusted, long-term partnerships to help our clients achieve their business objectives. We recognize that our people are our strength and the diverse talents they bring to our global workforce are directly linked to our success. We are an equal opportunity employer and place a high value on diversity and inclusion at our company. We do not discriminate on the basis of any protected attribute, including race, religion, color, national origin, gender, sexual orientation, gender identity, gender expression, age, marital or veteran status, pregnancy or disability, or any other basis protected under applicable law. We also make reasonable accommodations for applicants' and employees' religious practices and beliefs, as well as mental health or physical disability needs. Visit our FAQs for more information about requesting an accommodation. About the Team Our professionals in our Corporate Functions cover a diverse range of areas from finance and risk to human resources and marketing. Our corporate teams are an essential part of our company, ensuring that we're setting our businesses, clients, customers and employees up for success.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.