IRB Model Development Manager

Bailey & French
Liverpool
4 months ago
Applications closed

Related Jobs

View all jobs

Senior Credit Risk Modeller- Data Scientist

Job Title: Wholesale IRB Model Development Consultant (Quantitative Credit Risk)


Location:Remote but office is in London


Type:Full-time


Department:Quantitative Credit Risk, Risk Management


Reports To:Director of Quantitative Risk Management / Head of Risk Consulting


Job Overview:


We are seeking a highly skilled and motivated consultant to join our team, focusing on the development and validation of Internal Ratings-Based (IRB) models. As part of our Quantitative Credit Risk team, you will work closely with financial institutions, providing expertise on the development, calibration, validation, and implementation of IRB models in line with regulatory requirements. This role demands a deep understanding of wholesale credit portfolios, statistical modeling techniques, and regulatory frameworks such as Basel III/IV.


Key Responsibilities:


IRB Model Development:


  • Lead the development of IRB models for wholesale credit exposures, including Probability of Default (PD), Loss Given Default (LGD), and Exposure at Default (EAD).
  • Implement model calibration and backtesting methodologies to ensure accuracy and robustness.
  • Apply advanced statistical and econometric techniques to enhance model performance and predictive power.


Regulatory Compliance & Documentation:


  • Ensure all models are compliant with regulatory standards, including Basel III/IV and local supervisory guidelines.
  • Prepare detailed model documentation, including methodology, assumptions, and results, to support model approvals by internal governance and regulatory bodies.
  • Engage with regulators during reviews and provide necessary justifications and analyses to address feedback.


Model Validation & Risk Analytics:


  • Collaborate with validation teams to independently review and challenge model assumptions, methodologies, and performance.
  • Perform stress testing and sensitivity analyses to assess the impact of various risk factors on the models.
  • Work with internal audit and regulatory teams to ensure models meet all validation and audit requirements.


Stakeholder Engagement:


  • Provide expert advisory services to clients, including banks and financial institutions, regarding their IRB modeling framework and regulatory reporting obligations.
  • Collaborate with business, risk management, and IT teams to ensure seamless integration of models into systems and processes.
  • Lead or contribute to workshops and training sessions for clients on model development, risk management, and regulatory compliance.


Continuous Improvement:


  • Stay updated on evolving regulatory requirements and advancements in risk modeling techniques.
  • Contribute to the development of best practices in wholesale credit risk modeling within the consultancy.


Required Qualifications and Skills:


Education:

  • Master’s or Ph.D. in Quantitative Finance, Economics, Mathematics, Statistics, Engineering, or a related quantitative field.


Experience:

  • 5+ years of experience in quantitative risk modeling, with a focus on wholesale credit risk and IRB models.
  • Proven track record of developing, validating, and implementing IRB models within large financial institutions or consultancies.
  • Strong knowledge of Basel III/IV regulatory framework and experience working with global regulators.


Technical Skills:

  • Proficiency in statistical and data analysis software such as R, Python, SAS, or MATLAB.
  • Strong understanding of advanced statistical methods, econometrics, and machine learning techniques.
  • Experience with database management and query tools (e.g., SQL).


Soft Skills:

  • Excellent communication and presentation skills, with the ability to convey complex quantitative concepts to both technical and non-technical stakeholders.
  • Strong problem-solving skills and the ability to work both independently and in a team-oriented environment.
  • Strong project management and organizational skills with the ability to meet tight deadlines.


Preferred Qualifications:

  • Prior experience working in a consultancy setting or with multiple financial institutions.
  • Familiarity with automation of model development and validation processes.
  • Knowledge of cloud-based data infrastructure and analytics tools.


Compensation:

Fixed salary ranging from £70k-£100k depending on experience

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.

Machine Learning Jobs in the Public Sector: Opportunities Across GDS, NHS, MOD, and More

Machine learning (ML) has rapidly moved from academic research labs to the heart of industrial and governmental operations. Its ability to uncover patterns, predict outcomes, and automate complex tasks has revolutionised industries ranging from finance to retail. Now, the public sector—encompassing government departments, healthcare systems, and defence agencies—has become an increasingly fertile ground for machine learning jobs. Why? Because government bodies oversee vast datasets, manage critical services for millions of citizens, and must operate efficiently under tight resource constraints. From using ML algorithms to improve patient outcomes in the NHS, to enhancing cybersecurity within the Ministry of Defence (MOD), there’s a growing demand for skilled ML professionals in UK public sector roles. If you’re passionate about harnessing data-driven insights to solve large-scale problems and contribute to societal well-being, machine learning jobs in the public sector offer an unparalleled blend of challenge and impact. In this article, we’ll explore the key reasons behind the public sector’s investment in ML, highlight the leading organisations, outline common job roles, and provide practical guidance on securing a machine learning position that helps shape the future of government services.