IRB Model Development Manager

Bailey & French
Birmingham
1 year ago
Applications closed

Job Title: Wholesale IRB Model Development Consultant (Quantitative Credit Risk)


Location:Remote but office is in London


Type:Full-time


Department:Quantitative Credit Risk, Risk Management


Reports To:Director of Quantitative Risk Management / Head of Risk Consulting


Job Overview:


We are seeking a highly skilled and motivated consultant to join our team, focusing on the development and validation of Internal Ratings-Based (IRB) models. As part of our Quantitative Credit Risk team, you will work closely with financial institutions, providing expertise on the development, calibration, validation, and implementation of IRB models in line with regulatory requirements. This role demands a deep understanding of wholesale credit portfolios, statistical modeling techniques, and regulatory frameworks such as Basel III/IV.


Key Responsibilities:


IRB Model Development:


  • Lead the development of IRB models for wholesale credit exposures, including Probability of Default (PD), Loss Given Default (LGD), and Exposure at Default (EAD).
  • Implement model calibration and backtesting methodologies to ensure accuracy and robustness.
  • Apply advanced statistical and econometric techniques to enhance model performance and predictive power.


Regulatory Compliance & Documentation:


  • Ensure all models are compliant with regulatory standards, including Basel III/IV and local supervisory guidelines.
  • Prepare detailed model documentation, including methodology, assumptions, and results, to support model approvals by internal governance and regulatory bodies.
  • Engage with regulators during reviews and provide necessary justifications and analyses to address feedback.


Model Validation & Risk Analytics:


  • Collaborate with validation teams to independently review and challenge model assumptions, methodologies, and performance.
  • Perform stress testing and sensitivity analyses to assess the impact of various risk factors on the models.
  • Work with internal audit and regulatory teams to ensure models meet all validation and audit requirements.


Stakeholder Engagement:


  • Provide expert advisory services to clients, including banks and financial institutions, regarding their IRB modeling framework and regulatory reporting obligations.
  • Collaborate with business, risk management, and IT teams to ensure seamless integration of models into systems and processes.
  • Lead or contribute to workshops and training sessions for clients on model development, risk management, and regulatory compliance.


Continuous Improvement:


  • Stay updated on evolving regulatory requirements and advancements in risk modeling techniques.
  • Contribute to the development of best practices in wholesale credit risk modeling within the consultancy.


Required Qualifications and Skills:


Education:

  • Master’s or Ph.D. in Quantitative Finance, Economics, Mathematics, Statistics, Engineering, or a related quantitative field.


Experience:

  • 5+ years of experience in quantitative risk modeling, with a focus on wholesale credit risk and IRB models.
  • Proven track record of developing, validating, and implementing IRB models within large financial institutions or consultancies.
  • Strong knowledge of Basel III/IV regulatory framework and experience working with global regulators.


Technical Skills:

  • Proficiency in statistical and data analysis software such as R, Python, SAS, or MATLAB.
  • Strong understanding of advanced statistical methods, econometrics, and machine learning techniques.
  • Experience with database management and query tools (e.g., SQL).


Soft Skills:

  • Excellent communication and presentation skills, with the ability to convey complex quantitative concepts to both technical and non-technical stakeholders.
  • Strong problem-solving skills and the ability to work both independently and in a team-oriented environment.
  • Strong project management and organizational skills with the ability to meet tight deadlines.


Preferred Qualifications:

  • Prior experience working in a consultancy setting or with multiple financial institutions.
  • Familiarity with automation of model development and validation processes.
  • Knowledge of cloud-based data infrastructure and analytics tools.


Compensation:

Fixed salary ranging from £70k-£100k depending on experience

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.