Engineer the Quantum RevolutionYour expertise can help us shape the future of quantum computing at Oxford Ionics.

View Open Roles

Insights and Intelligence Lead - Associate

144780-Payments Us
London
10 months ago
Applications closed

Related Jobs

View all jobs

Applied AI ML Director - NLP / LLM and Graphs

Data Engineering Manager

Data Engineering Manager

Data Engineer - 12 month FTC

Data Engineer - 12 month FTC

Senior Machine Learning Engineer (AI Platform)

Description Job Description We are looking for an individual with an ability and passion to think beyond raw and disparate data, who can create data visualizations and intelligence solutions that will be utilized across the Payments organization. As an Insights and Intelligence lead, you will be a part of the Client Onboarding & Service (COS) Solutions Design & Commercialization team. Our mission is to drive exceptional client experience through a relentless focus on the voice of the client and internal stakeholders while setting new benchmarks for innovation and digital adoption. And, as a data visualization expert you will be at the forefront of this effort; working with multi-disciplinary, cross functional teams to leverage the power of our data and identify the best tools to analyse data, discover actionable insights – which we can share with the business and product to enhance our products, improve processes & control to save time and streamline processes, and support the organization and out team in developing the data skills of the future. Job Responsibilities Lead intelligence solution requirements gathering sessions with varying levels of leadership, complete detailed project planning utilizing tools such as JIRA to record and manage project execution steps Develop data repositories with data wrangling and workflow tools, such as Alteryx to provide data requirements into the required format for the data visualization software Develop data visualization solutions utilizing tools like Tableau and QlikSense that provides self-service intuitive insights to our key stakeholders Conduct thorough control testing of each component of the intelligence solution providing evidence that all data and visualization are providing accurate insights and evidence in the control process Seek to understand the stakeholders use cases empowering you to anticipate stakeholders’ requirements, questions, and objections Ability to analyse large data sets, summarize findings and recommend feasible solutions and explain complex ideas and methods Become a subject matter expert in these responsibilities and support team members in becoming more proficient themselves Required qualifications, capabilities and skills Bachelor’s degree in MIS or Computer Science, Mathematics, Engineering, Statistics or other quantitative or financial subject areas Experience working with data analytics projects, preferably related to financial services domains Experience developing advanced data visualization and presentations preferably with Tableau or QlikSense Experience with business intelligence analytic and data wrangling tools such as Alteryx, SAS, or Python Experience with relational databases optimizing SQL to pull and summarize large datasets, report creation and ad-hoc analysis Experience in report development and testing, and ability to interpret unstructured data and draw objective inferences given known limitations of the data Preferred qualifications, capabilities and skills Strong academic background with established analytical, programming and technical skills (Certifications in Customer Relationship Management, Data Management & Business Intelligence domain is preferable) Comfortable in dynamic, fast moving and evolving environments interacting with varying levels of seniority up and down the organisation Experience with SQL, Hive, Spark SQL, Impala or other big-data query tools Demonstrated ability to think beyond raw data and to understand the underlying business context and sense business opportunities hidden in data Strong written and oral communication skills; ability to communicate effectively with all levels of management and partners from a variety of business functions

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Future of Machine Learning Jobs: Careers That Don’t Exist Yet

Machine learning (ML) has quickly become one of the most transformative forces in modern technology. What began as a subset of artificial intelligence—focused on algorithms that learn from data—has grown into a foundational capability across industries. From voice assistants and recommendation systems to fraud detection and predictive healthcare, machine learning underpins countless innovations shaping daily life. In the UK, demand for ML professionals has surged. Financial services, healthcare providers, retailers, and tech start-ups are investing heavily in ML talent. Roles like Machine Learning Engineer, Data Scientist, and AI Researcher are among the most sought-after and best-paid in the tech sector. Yet we are still only at the start. Advances in generative AI, quantum computing, edge intelligence, and ethical governance are reshaping the field. Many of the most critical machine learning jobs of the next 10–20 years don’t exist yet. This article explores why new careers will emerge, the kinds of roles likely to appear, how today’s jobs will evolve, why the UK is well positioned, and how professionals can prepare.

Seasonal Hiring Peaks for Machine Learning Jobs: The Best Months to Apply & Why

The UK's machine learning sector has evolved into one of Europe's most intellectually stimulating and financially rewarding technology markets, with roles spanning from junior ML engineers to principal machine learning scientists and heads of artificial intelligence research. With machine learning positions commanding salaries from £32,000 for graduate ML engineers to £160,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this pioneering and rapidly evolving field. Unlike traditional software engineering roles, machine learning hiring follows distinct patterns influenced by AI research cycles, model development timelines, and algorithmic innovation schedules. The sector's unique combination of mathematical rigour, computational complexity, and real-world application requirements creates predictable hiring windows that strategic professionals can leverage to advance their careers in developing tomorrow's intelligent systems. This comprehensive guide explores the optimal timing for machine learning job applications in the UK, examining how enterprise AI strategies, academic research cycles, and deep learning initiatives influence recruitment patterns, and why strategic timing can determine whether you join a groundbreaking AI research team or miss the opportunity to develop the next generation of machine learning algorithms.

Pre-Employment Checks for Machine Learning Jobs: DBS, References & Right-to-Work and more Explained

Pre-employment screening in machine learning reflects the discipline's unique position at the intersection of artificial intelligence research, algorithmic decision-making, and transformative business automation. Machine learning professionals often have privileged access to proprietary datasets, cutting-edge algorithms, and strategic AI systems that form the foundation of organizational competitive advantage and automated decision-making capabilities. The machine learning industry operates within complex regulatory frameworks spanning AI governance directives, algorithmic accountability requirements, and emerging ML ethics regulations. Machine learning specialists must demonstrate not only technical competence in model development and deployment but also deep understanding of algorithmic fairness, AI safety principles, and the societal implications of automated decision-making at scale. Modern machine learning roles frequently involve developing systems that impact hiring decisions, financial services, healthcare diagnostics, and autonomous operations across multiple regulatory jurisdictions and ethical frameworks simultaneously. The combination of algorithmic influence, predictive capabilities, and automated decision-making authority makes thorough candidate verification essential for maintaining compliance, fairness, and public trust in AI-powered systems.