National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

(High Salary) Data Scientist - Grid Innovation Model Development (Energy Sector Experience Required)...

GE Vernova
Stafford
1 day ago
Create job alert

Job Description

Job Description Summary
Join us in our journey to redefine what's possible with AI and make a lasting impact on the world of Energy.
GE Vernova is accelerating the path to more reliable, affordable, and sustainable energy, while helping our customers power economies and deliver the electricity that is vital to health, safety, security, and improved quality of life. Are you excited at the opportunity to electrify and decarbonize the world?

We are seeking a dynamic, forward-thinking, and results-driven Data Scientist who will primarily focus on deriving advanced models for grid innovation applications. Reporting to the AI leader in the CTO organization, the Data Scientist will collaborate closely with Grid Automation (GA) product lines, R&D teams, product management, and other GA functions to drive efficiency and innovation. The ideal candidate should have significant experience in the energy sector, specifically in grid automation and energy systems.

This role will be responsible for designing and building a common framework for data storage, analytics, and AI model deployment. The Data Scientist will work across different functions within Grid Automation (GA) to identify opportunities for leveraging data and AI to solve critical customer problems, improve efficiencies, and develop scalable solutions. This role will also involve developing Proof of Concepts (POCs) and ensuring the deployment of models on edge or cloud-based systems.

Job Description

Essential Responsibilities:

  • Develop and maintain database structures, schemas, and data models to support AI and machine learning applications.
  • Utilize efficient storage technologies (Relational, Data Lakes, NoSQL, etc.) to manage data storage, access, and security.
  • Design and implement scalable and reliable data pipelines for cleaning, transforming, and extracting features from both structured and unstructured data.
  • Build and maintain integrations with internal and external data sources and APIs.
  • Identify and integrate new datasets that enhance product capabilities and provide actionable insights.
  • Automate the integration of data from various sources into a unified format, tailored to specific business needs.
  • Monitor, optimize, and ensure the scalability of data pipelines.
  • Collaborate with Data Scientists, ML Engineers, and other cross-functional teams to meet data needs for AI/ML models and analytics.
  • Develop and deliver innovative solutions in collaboration with teams across the organization, helping the business leverage AI and data analytics to solve customer challenges.

    Must-Have Requirements:

  • PhD, Master's, or Bachelor's degree in Computer Science, Electrical Engineering, or a related field with hands-on experience in data engineering.
  • Significant experience in the energy sector, specifically in grid automation or energy systems, with expertise in working with energy-related data.
  • Significant experience in data engineering, specifically in creating and managing data pipelines for structured and unstructured data.
  • Solid experience with database management systems (e.g., relational databases like PostgreSQL, NoSQL databases like Cassandra and MongoDB).
  • Solid expertise in utilizing data storage technologies such as Data Lakes, NoSQL, and relational databases.
  • Solid experience in building scalable and reliable data pipelines for data transformation and feature extraction.
  • Solid proficiency in scientific programming languages like Python, Scala, Java, or SQL.
  • Solid experience with cloud platforms (AWS, GCP, Azure) and cloud services for data storage, processing, and analytics.

    Nice-to-Have Requirements:

  • Familiarity with big data technologies such as Hadoop, Kafka, and similar tools.
  • Familiarity with version control systems like Git.
  • Experience with GraphDB, MongoDB, SQL/NoSQL, MS Access, and other databases.
  • Ability to work in a collaborative, multi-functional environment, demonstrating a proactive approach and solid communication skills.
  • Familiarity with data warehousing principles and technologies.

    At GE Vernova - Grid Automation, you will have the opportunity to work on cutting-edge projects that shape the future of energy. We offer a collaborative environment where your expertise will be valued, and your contributions will make a tangible impact. Join us and be part of a team that is driving innovation and excellence in control systems.

    About GEV Grid Solutions:

    At GEV Grid Solutions we are electrifying the world with advanced grid technologies. As leaders in the energy space our goal is to accelerate the transition for a more energy efficient grid to full fill the needs of tomorrow. With a focus on growth and sustainability GE Grid Solutions plays a pivotable role in integrating Renewables onto the grid to drive to carbon neutral. In Grid Solutions we help enable the transition for a greener more reliable Grid. GE Grid Solutions has the most advanced and comprehensive product and solutions portfolio within the energy sector.

    Why we come to work:

    At GEV, our engineers are always up for the challenge - and we're always driven to find the best solution. Our projects are unique and interesting, and you'll need to bring a solution-focused, positive approach to each one to do your best. Surrounded by committed, loyal colleagues, if you can dare to bring your ingenuity and desire to make an impact, you'll be exposed to game-changing, diverse projects that truly allow you to play your part in the energy transition.

    What we offer:

    A key role in a dynamic, international working environment with a large degree of flexibility of work agreements

    Competitive benefits, and great development opportunities - including private health insurance.

    Additional Information

    Relocation Assistance Provided: No

Related Jobs

View all jobs

Senior Software Developer

Senior Python Developer

Data Engineer

Pre-Sales Engineer / Product Associate

Senior Vehicle Performance Engineer

Senior Operational Analyst

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs Skills Radar 2026: Emerging Tools, Frameworks & Platforms to Learn Now

Machine learning is no longer confined to academic research—it's embedded in how UK companies detect fraud, recommend content, automate processes & forecast risk. But with model complexity rising and LLMs transforming workflows, employers are demanding new skills from machine learning professionals. Welcome to the Machine Learning Jobs Skills Radar 2026—your annual guide to the top languages, frameworks, platforms & tools shaping machine learning roles in the UK. Whether you're an aspiring ML engineer or a mid-career data scientist, this radar shows what to learn now to stay job-ready in 2026.

How to Find Hidden Machine Learning Jobs in the UK Using Professional Bodies like BCS, Turing Society & More

Machine learning (ML) continues to transform sectors across the UK—from fintech and retail to healthtech and autonomous systems. But while the demand for ML engineers, researchers, and applied scientists is growing, many of the best opportunities are never posted on traditional job boards. So, where do you find them? The answer lies in professional bodies, academic-industry networks, and tight-knit ML communities. In this guide, we’ll show you how to uncover hidden machine learning jobs in the UK by engaging with groups like the BCS (The Chartered Institute for IT), Turing Society, Alan Turing Institute, and others. We’ll explore how to use member directories, CPD events, SIGs (Special Interest Groups), and community projects to build connections, gain early access to job leads, and raise your professional profile in the ML ecosystem.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.