Head of Data (Senior Data Scientist)

Verity Relationship Intelligence
City of London
1 month ago
Create job alert
Our story

We were founded in 2004 to help business leaders leverage the full potential of their client relationships, so they were no longer putting out fires or finding themselves blindsided by revenue loss.


We are the leading provider of B2B Relationship Intelligence and uniquely possess over 20 years of benchmark data on client satisfaction across diverse industries. It’s not only our decades of experience and primary data repository that make us unique, it’s also our in-depth scoring system, The Relationship Rating (TRR). This gives a holistic view of customer satisfaction as the data goes deeper than the Net Promoter Score (NPS) method, providing real insight into the customer relationship.


We believe that effective relationship management is one of the most powerful yet underutilised strategies for achieving commercial stability and growth. By adopting a strategic approach to relationship management, we support businesses in leveraging these crucial connections to drive financial performance and growth.


The role

As Head of Data, you will lead the development and execution of our data strategy, ensuring data is collected, analysed, and transformed into actionable insights that drive business growth. You’ll partner with cross‑functional teams to embed data‑driven decision‑making, establish robust governance standards, and build scalable, future‑ready data infrastructure.


This role is ideal for a senior data scientist looking to step up into a Head of Data position, taking ownership of building and shaping a data function from the ground up. You will manage a small team while remaining hands‑on with technical work, making this perfect for someone who thrives in a dynamic SME environment and wants to create something new from scratch. You’ll work closely with the CTO, giving you the opportunity to make a real impact on the business.


What you will be doing

  • Developing and executing a comprehensive data strategy aligned with business objectives
  • Building, managing, and mentoring a high‑performing technical team
  • Designing and implementing scalable data architecture, automated processing pipelines, and analytics frameworks
  • Drive advanced analytics and data science initiatives, including predictive modelling, to uncover actionable insights and support strategic decision‑making and partner closely with the insights and analytics department
  • Working closely with engineering, product, and business teams to derive insights and inform decision‑making
  • Driving data democratization across the company by promoting self‑serve analytics
  • Identifying and implementing machine learning and AI opportunities where applicable
  • Monitoring data performance, reliability, and integrity to ensure high‑quality data outputs
  • Staying up‑to‑date with industry trends, tools, and best practices

What you will bring

  • Strong decision‑making skills
  • Team leadership and management
  • Project management skills
  • Data model ownership (background in Salesforce highly beneficial but not strictly necessary)
  • Data quality oversight
  • Data collections/ingestion/completion
  • Understanding of software development best practices
  • Skills in analytics modelling and statistical modelling
  • A background in data science/ML for future hires and team support – minimum be able to showcase basic MVPs to prove viability/value
  • Strong stakeholder management and communication skills with employees at all levels

A global team, united by diversity and inclusion

At Verity, we know that diversity fosters innovation and stronger client relationships – ensuring that we bring a wide range of perspectives and solutions to every challenge.


Strong relationships are at the heart of our work, but they’re also at the heart of our ethos as an employer.


As a company with offices around the world, we are proud of the range of cultures, skills, viewpoints and abilities that we bring to the service of our clients.


We are committed to creating a diverse and inclusive organisation in which our people feel a sense of belonging, regardless of their ethnicity, religion, age, physical abilities, sexual orientation or gender identity.


We also recognise that individual needs differ, and we are dedicated to providing accommodations for interviews, applications, and workplace adjustments to support people with disabilities, neurodivergence, or other specific requirements.


If you need any support, please don’t hesitate to reach out to us.


#J-18808-Ljbffr

Related Jobs

View all jobs

Head of Data Science

Head of Data Engineering - London

Head of Data Science

Head of Data Science

Head of Data Science

Head of Data Science

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.