Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Head of Data Quality

Berg Search
Sheffield
5 months ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Engineer

Data Analyst - Asset Management

Senior Data Engineer

Technical Data Engineer

Head of data engineering - remote

Lead Full-stack Data Scientist

Head of Data Quality

Remote-first (HQ in Cambridge, UK)

RegGenome is a regulatory data technology company and a leader in the field of computational regulation, transforming how the world processes and consumes regulatory information. We leverage AI to convert human-readable regulations into machine-readable and machine-consumable data.


As a commercial spin-out of the Regulatory Genome Project (RGP)—a pioneering public-private partnership with the University of Cambridge Judge Business School—our mission is to build universal information structures for regulatory data, creating a regulatory commons.

Our team combines deep expertise in AI-driven data processing, NLP/ML models, and regulatory communities. Backed by £15 million in funding, we have secured strong product-market fit and commercial traction with global regulators and financial institutions. With our Series A funding round nearing completion, we are expanding our team to scale our data quality and assurance capabilities.


This is an exciting time to join us as we leverage AI and automation to build a world-leading regulatory data repository.


What we are looking for:

We are searching for a Head of Data Quality to lead and formalize our data quality assurance strategy. This is a critical leadership role, ensuring that our data is accurate, reliable, traceable, and compliant with industry standards.

You will oversee data quality governance, risk management, and validation frameworks, ensuring that our AI-driven regulatory data processes meet the highest standards. You will also work closely with data science, engineering, product, and regulatory teams to align data quality initiatives with business goals.

This is a high-impact role for someone who thrives on building scalable quality processes, implementing automation, and driving a culture of continuous improvement.


About you:

· You are an experienced leader in data quality, governance, or assurance, ideally within AI, regulatory, or financial services industries.

· You thrive in a strategic yet hands-on role, balancing high-level quality initiatives with execution and process optimization.

· You are comfortable working in a fast-paced, data-driven environment, implementing automation and monitoring solutions for quality control.

· You are proactive, assertive, and detail-oriented, capable of leading cross-functional collaboration on data quality issues.

· You have strong analytical skills and a structured approach to risk management and data validation.

· You are comfortable working in an agile environment, managing priorities and adjusting strategies as needed.

What you’ll do:

· Develop and implement a company-wide data quality strategy, ensuring all data sources, transformations, and AI-driven decisions are traceable, auditable, and compliant.

· Define and monitor key risk areas for data quality, creating robust risk management protocols.

· Oversee automation in data quality monitoring, working with engineering and data science teams to build scalable validation frameworks.

· Ensure AI models produce accurate, explainable, and reliable outputs, implementing testing and feedback loops.

· Establish and enforce Service Level Agreements (SLAs) for data quality issues, ensuring efficient remediation.

· Manage and coordinate quality assurance efforts across teams, ensuring alignment with business objectives and regulatory requirements.

· Lead the Data Quality team, mentoring analysts and driving operational excellence.

· Stay ahead of industry trends in data governance and AI-driven quality assurance, ensuring our strategies remain best-in-class.


What you’ll need:

· 5+ years of experience in data quality, governance, or quality assurance, ideally in AI, regulatory technology, or financial services.

· Strong understanding of data integrity frameworks, compliance requirements, and risk management best practices.

· Experience implementing automated data quality monitoring tools and dashboards.

· Familiarity with AI/ML quality assurance practices, including model validation and explainability.

· Proven leadership and stakeholder management skills, with the ability to drive cross-functional collaboration.

· Comfortable making data-driven decisions, balancing short-term priorities with long-term strategic objectives.


Nice to have:

· Experience working in a growing start-up or scale-up environment.

· Familiarity with Python, SQL, or data pipeline automation tools.

· Experience with Jira, Notion, or other project management tools.


What we offer:

· Market rate salary

· Ample opportunity to grow with the company as we scale

· 25 days holiday in addition to UK Bank Holidays

· Share options

· A flexible remote-working environment

· Laptop

5 days a year of personal development time

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why the UK Could Be the World’s Next Machine Learning Jobs Hub

Machine learning (ML) is becoming essential to industries across the globe—from finance and healthcare to retail, logistics, defence, and the public sector. Its ability to uncover patterns in data, make predictions, drive automation, and increase operational efficiency has made it one of the most in-demand skill sets in the technology world. In the UK, machine learning roles—from engineers to researchers, product managers to analysts—are increasingly central to innovation. Universities are expanding ML programmes, enterprises are scaling ML deployments, and startups are offering applied ML solutions. All signs point toward a surging need for professionals skilled in modelling, algorithms, data pipelines, and AI systems. This article explores why the United Kingdom is exceptionally well positioned to become a global machine learning jobs hub. It examines the current landscape, strengths, career paths, sector-specific demand, challenges, and what must happen for this vision to become reality.

The Best Free Tools & Platforms to Practise Machine Learning Skills in 2025/26

Machine learning (ML) has become one of the most in-demand career paths in technology. From predicting customer behaviour in retail to detecting fraud in banking and enabling medical breakthroughs in healthcare, ML is transforming industries across the UK and beyond. But here’s the truth: employers don’t just want candidates who have read about machine learning in textbooks. They want evidence that you can actually build, train, and deploy models. That means practising with real tools, working with real datasets, and solving real problems. The good news is that you don’t need to pay for expensive software or courses to get started. A wide range of free, open-source tools and platforms allow you to learn machine learning skills hands-on. Whether you’re a beginner or preparing for advanced roles, you can practise everything from simple linear regression to deploying deep learning models — at no cost. In this guide, we’ll explore the best free tools and platforms to practise machine learning skills in 2025, and how to use them effectively to build a portfolio that UK employers will notice.

Top 10 Skills in Machine Learning According to LinkedIn & Indeed Job Postings

Machine learning (ML) is at the forefront of innovation, powering systems in finance, healthcare, retail, logistics, and beyond in the UK. As organisations leverage ML for predictive analytics, automation, and intelligent systems, demand for skilled practitioners continues to grow. So, which skills are most in demand? Drawing on insights from LinkedIn and Indeed, this article outlines the Top 10 machine learning skills UK employers are looking for in 2025. You'll learn how to demonstrate these capabilities through your CV, interviews, and real-world projects.