Head of Artificial Intelligence – Smart Manufacturing

Bristol
3 weeks ago
Applications closed

Related Jobs

View all jobs

Head of Digital & ICT

Head of Commercial Analysis and Reporting

Head of Data Engineering

Head of Data Science & AI

Head of Data Science and Analytics

Head of Data Science

Head of Artificial Intelligence – Smart Manufacturing

A UK-based manufacturing group, headquartered in Bristol, is undergoing a full-scale digital transformation — placing AI and machine learning at the heart of its operational strategy.

To lead this journey, we are hiring a Head of Artificial Intelligence to define, build, and scale enterprise-grade AI solutions across production, supply chain, and predictive analytics.

This is a senior leadership role with board visibility and direct influence on the strategic roadmap of a business at the forefront of Industry 4.0.

Key Responsibilities



Define and lead the company-wide AI vision and roadmap.

*

Hire and manage a high-performance team of ML Engineers and Data Scientists.

*

Oversee the delivery of AI projects, from pilot to full deployment, across smart factory operations.

*

Translate manufacturing business needs into scalable AI/ML solutions.

*

Represent the AI function in strategic meetings with board members and external stakeholders.

What We're Looking For

*

Proven experience leading AI teams within a manufacturing or industrial setting.

*

Strong hands-on knowledge of machine learning, predictive maintenance, and/or digital twins.

*

Technical proficiency in Python, TensorFlow, PyTorch, or similar frameworks.

*

Excellent communication skills and stakeholder management experience at the senior level.

*

Bristol-based or open to commuting 1–2 days a week to the HQ.

What’s on Offer

*

Highly visible strategic leadership position in a business poised for growth.

*

Influence over multi-million-pound investment decisions in AI and tech.

*

Generous bonus and potential equity package.

*

Flexibility to shape and build a world-class AI function from the ground up.

Apply Now
Submit your CV today to explore this exciting opportunity to lead AI innovation from the ground up in Bristol’s industrial heartland

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!