Head of Artificial Intelligence

Uniting Ambition
London
1 week ago
Create job alert

An exciting opportunity to join a large-scale consultancy firm looking to amplify their Gen AI / Agentic efforts. This role is focused on setting the strategic direction, vision, and execution of AI initiatives along with providing guidance for their talented group of AI engineers.


About you:

The ideal candidate will have experience leading AI teams, setting the roadmap and delivering enterprise-level AI solutions at scale. You should have a solid grasp of modern AI tools and be capable of guiding your team through the complexities of implementing and optimising these technologies in real-world applications.


Key responsibilities:

  • Define and drive the overall AI strategy and vision for the company, aligning with business objectives and emerging AI trends.
  • Lead and mentor a growing team of AI engineers and technical experts, ensuring alignment with industry best practices.
  • Oversee the development and deployment of AI-driven solutions and applications for clients, ensuring robust technical execution and scalability.
  • Work closely with senior stakeholders, including product management and business leaders, to define AI-driven initiatives that drive business value.
  • Evaluate and integrate new AI technologies, tools, and frameworks into the company’s AI ecosystem.
  • Stay at the forefront of AI research and industry trends, ensuring the AI capabilities remain competitive and innovative.
  • Foster a collaborative environment across teams, facilitating knowledge-sharing and continuous learning.


What You Bring to the Table:


  • A degree in Computer Science, Engineering, or a related field. A Master's or Ph.D. is a plus.
  • Proven experience (5+ years) in a leadership role within AI, Machine Learning, or Data Science, ideally within a consultancy, tech firm, or enterprise setting.
  • Strong technical understanding of modern AI tools and frameworks such as PyTorch, TensorFlow, large language models (LLMs) and other AI technologies.
  • Experience setting AI strategy and executing on large-scale AI projects, with a focus on delivering tangible business outcomes.
  • A track record of mentoring and leading cross-functional teams, with the ability to inspire, motivate, and support your team members.
  • Exceptional communication skills, with the ability to translate complex technical concepts to non-technical stakeholders.
  • A passion for AI and its potential to solve business challenges and transform industries.


If this sounds like you, please apply for more details.

Related Jobs

View all jobs

Lecturer in Power Systems Engineering (KK12588) - Bath, BA27AY

Senior Technical Services Engineer

Principal Data Scientist - NLP

Lead Innovation Engineer

Head of Commercial Insights

Head of Software Development

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning vs. Deep Learning vs. MLOps Jobs: Which Path Should You Choose?

Machine Learning (ML) continues to transform how businesses operate, from personalised product recommendations to automated fraud detection. As ML adoption accelerates in nearly every industry—finance, healthcare, retail, automotive, and beyond—the demand for professionals with specialised ML skills is surging. Yet as you browse Machine Learning jobs on www.machinelearningjobs.co.uk, you may encounter multiple sub-disciplines, such as Deep Learning and MLOps. Each of these fields offers unique challenges, requires a distinct skill set, and can lead to a rewarding career path. So how do Machine Learning, Deep Learning, and MLOps differ? And which area best aligns with your talents and aspirations? This comprehensive guide will define each field, highlight overlaps and differences, discuss salary ranges and typical responsibilities, and explore real-world examples. By the end, you’ll have a clearer vision of which career track suits you—whether you prefer building foundational ML models, pushing the boundaries of neural network performance, or orchestrating robust ML pipelines at scale.

Machine Learning Programming Languages for Job Seekers: Which Should You Learn First to Launch Your ML Career?

Machine learning has swiftly become a cornerstone of modern technology, transforming entire industries—healthcare, finance, e-commerce, and beyond. As a result, demand for machine learning engineers, data scientists, and ML researchers continues to surge, creating a rich landscape of opportunity for job seekers. But if you’re new to the field—or even an experienced developer aiming to transition—the question arises: Which programming language should you learn first for a successful machine learning career? From Python and R to Scala, Java, C++, and Julia, the array of choices can feel overwhelming. Each language boasts its own community, tooling ecosystem, and industry use cases. This detailed guide, crafted for www.machinelearningjobs.co.uk, will help you align your learning path with in-demand machine learning roles. We’ll delve into the pros, cons, and ideal use cases for each language, offer a simple starter project to solidify your skills, and provide tips for leveraging the ML community and job market. By the end, you’ll have the insights you need to confidently pick a language that catapults your machine learning career to new heights.

UK Visa & Work Permits Explained: Your Essential Guide for International Machine Learning Professionals

Machine learning continues to redefine the global tech landscape, enabling transformative breakthroughs in sectors as diverse as healthcare, finance, retail, gaming, and autonomous vehicles. The United Kingdom has emerged as a hotbed for machine learning (ML) research and development, thanks to its world-class universities, well-funded start-up scene, and a broad base of established corporations adopting AI-driven solutions. For international professionals specialising in ML, the UK’s growing demand and favourable ecosystem offer exciting opportunities to innovate and advance your career. Yet, before you can join this dynamic environment, you’ll need to secure the correct work visa or permit. This article offers a comprehensive breakdown of the UK visa routes most relevant to machine learning specialists, including eligibility criteria, application processes, and practical tips for a successful transition. Whether you’re an ML researcher, data scientist, AI engineer, or deep learning specialist, understanding the UK immigration framework is the first step to pursuing your career goals in Britain’s vibrant tech sector.