Growth Data Scientist/Analyst (copy)

Crypto.com
City of London
4 days ago
Create job alert

We are seeking a dynamic Growth Data Scientist/Analyst to join our Growth team. The successful candidate will be instrumental in leveraging data to drive strategic decisions, optimize growth initiatives, and enhance user acquisition strategies.

Responsibilities
  • Data Analysis and Visualization
  • Design, develop, and maintain interactive dashboards in Tableau to support both recurring and ad-hoc reporting needs across various growth functions and leadership teams, enabling real-time performance tracking and insights
  • Write and optimize SQL queries to analyze large-scale datasets, supporting initiatives like user acquisition optimization, campaign performance evaluation, and customer lifecycle management to drive business growth
  • Partner with cross-functional teams—including growth, product, data engineering, and external vendors—to improve data infrastructure, ensuring accurate, scalable, and efficient data pipelines that support business goals
  • Streamline and automate recurring data workflows and processes, manage SQL automation and job scheduling, and maintain thorough documentation to enhance team productivity and data reliability
  • Develop advanced analytical models to inform marketing strategies, including predictive analytics and marketing mix modeling, providing actionable insights for campaign planning and optimization
  • Leverage statistical techniques and business intelligence tools to uncover trends, patterns, and opportunities that inform strategic growth decisions
  • Collaborate closely with cross-functional stakeholders to implement data-driven solutions and support end-to-end project delivery, ensuring alignment with business objectives and timelines
  • Stay proactive in professional development by exploring emerging tools and methodologies in data science and analytics, continuously enhancing analytical capabilities and industry knowledge
Requirements
  • Bachelor’s degree in a quantitative field such as Computer Science, Statistics, Engineering, Information Systems, or related fields
  • 2+ years of experience in data analysis or a related field. Experience in the Crypto and Technology industry is a plus
  • Proficiency in SQL, Databricks, and Tableau for processing, analyzing, and visualizing large datasets
  • Experience with statistical software (e.g., R, Python) and libraries for managing, manipulating, and analyzing data
  • Strong analytical skills with the ability to collect, organize, analyze, and disseminate significant amounts of information with attention to detail and accuracy
  • Adept at querying, report writing, and presenting findings
  • Understanding of digital marketing concepts, such as user acquisition (organic, non-organic, partnerships, etc.), campaign management, and customer lifecycle management
  • Familiarity with tools like AppsFlyer, Google Tag Manager, Google Analytics, and SensorTower
  • Strong communication skills to effectively convey complex data insights to non-technical stakeholders and to translate business needs into technical and data requirements
  • Ability to thrive in a fast-paced environment, manage multiple projects, and adapt to shifting priorities

London, England, United Kingdom


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist

Senior Data Scientist & Machine Learning Researcher

Baseball Analyst / Data Scientist

Data Scientist

Data Analyst

Senior Football Data Scientist | Manchester United FC

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.