Graphics Software Engineer, Greater London

TN United Kingdom
Greater London
1 week ago
Applications closed

Related Jobs

View all jobs

Computer Vision and Machine Learning Engineer - / C++ / Python / Tensorflow / PyTorch / Image [...]

Research Engineer, ML, AI & Computer Vision

Machine Learning Engineer

Research Engineer

Research Engineer

Machine Learning Engineer for Game Technology

Social network you want to login/join with:

Graphics Software Engineer, Greater LondonClient:

Apple

Location:

Greater London, United Kingdom

Job Category:

Other

EU work permit required:

Yes

Job Reference:

30c4b4b9155c

Job Views:

7

Posted:

03.03.2025

Job Description:

Summary:
Imagine what you could do here. At Apple, new ideas have a way of becoming extraordinary products, services, and customer experiences very quickly. Bring passion and dedication to your job and there's no telling what you could accomplish. Dynamic, smart people and inspiring, innovative technologies are the norm here. The people who work here have reinvented entire industries with all Apple Hardware products. The same passion for innovation that goes into our products also applies to our practices strengthening our commitment to leave the world better than we found it. We’re looking for those with talent and ambition to innovate the way we design Apple silicon graphics processors, to provide the next technological leap and improve customer experiences in areas like real-time graphics, VR/AR, parallel computing and deep learning and welcome you to work among the industry’s best. As a Graphics Software Engineer at our GPU UK Design Centre, you are responsible for developing GPU workloads, automated flows and tools to support the verification process of our GPU designs. You will work alongside teams of architects, hardware, software and verification engineers to ensure the functionality, performance and power of our GPU designs can be efficiently and effectively verified.

Key Qualifications:
Excellent communications skills. Self-motivated and organised.
Excellent C/C++ programming and problem solving skills.
Strong understanding of rendering and/or concurrent programming algorithms.
Experience with one or more GPU APIs (Metal, DX12, Vulkan, CUDA, OpenGL and/or OpenCL).
Experience with scripting languages, such as Python.
Familiar with one or more GPU or CPU hardware architectures.
Architecture validation and/or design verification knowledge desirable.
GPU/CPU performance analysis experience desirable.
Experience with GPU API capture and analysis tools desirable.

Description:
In this role, you will:

  1. Define, author and debug GPU architecture functional, performance and power test suites.
  2. Support GPU model, hardware design, and hardware verification teams pre / post silicon.
  3. Lead the design and implementation of GPU verification tools and APIs.
  4. Create production quality automated flows for graphics core verification.
  5. Provide insight into how real-world workloads could stress the GPU architecture and benefit from new features.
  6. Challenge architectural design decisions. Propose refinements based on issues found.
  7. Support GPU software teams during driver bring-up.

Additional Requirements:
Some international travel will be required.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Leadership for Managers: Strategies to Motivate, Mentor, and Set Realistic Goals in Data-Driven Teams

Machine learning (ML) has become an indispensable force in the modern business world, influencing everything from targeted marketing campaigns to advanced medical diagnostics. As industries integrate predictive algorithms and data-driven decision-making into their core operations, the need for effective leadership in machine learning environments has never been greater. Whether you’re overseeing a small team of data scientists or spearheading an enterprise-scale ML project, your leadership style must accommodate rapid innovation, complex problem-solving, and diverse stakeholder expectations. This guide provides actionable insights into how you can motivate, mentor, and establish achievable goals for your machine learning teams—ensuring they thrive in data-driven environments.

Top 10 Books to Advance Your Machine Learning Career in the UK

Machine learning (ML) remains one of the fastest-growing fields within technology, reshaping industries across the UK from finance and healthcare to e-commerce, telecommunications, and beyond. With increasing demand for ML specialists, job seekers who continually update their knowledge and skills hold a significant advantage. In this article, we've curated ten essential books every machine learning professional or aspiring ML engineer in the UK should read. Covering foundational theory, practical implementations, advanced techniques, and industry trends, these resources will equip you to excel in your machine learning career.

Navigating Machine Learning Career Fairs Like a Pro: Preparing Your Pitch, Questions to Ask, and Follow-Up Strategies to Stand Out

Machine learning (ML) has swiftly become one of the most in-demand skill areas across industries, with companies leveraging predictive models and data-driven insights to solve challenges in healthcare, finance, retail, manufacturing, and beyond. Whether you’re an early-career data scientist aiming to break into ML, a seasoned engineer branching into deep learning, or a product manager exploring AI-driven solutions, machine learning career fairs offer a powerful route to connect with prospective employers face-to-face. Attending these events can help you: Network with hiring managers and technical leads who make direct recruitment decisions. Gain insider insights on the latest ML trends and tools. Learn about emerging job roles and new industry verticals adopting machine learning. Showcase your interpersonal and communication skills, both of which are increasingly important in collaborative AI/ML environments. However, with many applicants vying for attention in a bustling hall, standing out isn’t always easy. In this detailed guide, we’ll walk you through how to prepare meticulously, pitch yourself confidently, ask relevant questions, and follow up effectively to land the machine learning opportunity that aligns with your ambitions.